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SUMMARY

In many problems arising in connection with designing servomechanisms

and similar systems one has to solve

m-d x c di- + kx = ý
dt

+

with the discontinuous forcing term -D , and to find a transition or

switching curve in the phase plane so that solutions reach the zero state

in minimum time.

This problem arises in designing the systems so as to obtain optimum

performance, and is therefore of considerable practical as well as mathe-

matical interest; but very little work has previously been done on it, and

that mainly from a physical rather than mathematical point of view.

In this thesis there is given a complete solution of this problem.

The treatment is much more lengthy than one would expect, because it has

been necessary to break the problem up into cases; none of the general

methods available in the literature apply. The final result is given in

Theorem 10, page 63.

In addition we have recalled the situation that occurs when the

switching curve is linear. We have also, at the end, touched upon certain

problems that arise when the equation is nonlinear, notably of the van der Pol

type. This case, however, is so much more complicated than the linear case

that no attempt has bsen ,nade to give a complete solution.
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I. INTRODUCTION

A simple example will serve to illustrate the kind of physical situa-

tion in which the central problem of this paper arises. Consider, there-

fore, a servomechanism which consists of a motor, a source of power, and a

feedback circuit. We shall suppose that the purpose of the servomechanism

is to hold the output of the motor constant, say at the value y , where

to fix the ideas we shall suppose that the output of the motor is measured

in terms of the angle y of the rotor with respect to some fixed reference

Y -Yo

POE FEDBC MOTORn ygOD
SOURCE CIRCUIT (OD

position. The feedback circuit is sensitive to errors in y , i.e., to the

quantity y - y0 , and its object is, upon sensing such an error, to apply

to the motor an input the effect of which will be to tend to nullify this

error. The input to the motor is denoted by f , and will be supposed to

depend on x = y - Yo and the first derivative with respect to time of this

quantity.
.

The differential equation for such a system can be taken to be

d2

I d + R d= K-f xd

dt

or. equivalently,

d 2x d K(I t--- + R d=K'f x dt' 1

dt dt

where I is a constant representing the moment of inertia of the rotor,

R is a constant representing various sources of energy dissipation in

the system, and K is the "torque constant." For a given motor (so

See, e.g., James, Nichols, and Phillips: Theory of Servomechanisms
(1947), F. 14.
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that I , R , K are fixed) the crucial element in this equation is nat-

urally the function f , which is determined by the design of the feedback

circuit and by the strength of the power source.

The problem to be considered here arises when one puts a further as-

suription on f , namely the assumption that this function can take on only
+

the two values -1 , where 0 is a certain positive constant. This situa-

tion occurs when the feedback circuit acts simply as a switch (relay) which

applies to the motor the full strength of the power source either directly

(+P) or after inverting its polarity (4P). This scheme has the prima facie

advantages that (i) the feedback circuit, since it no longer needs to yield

a continuously varying output, can be vastly simplified; and (2) it wolld

seem likely that, by always using the full strength of the power source,

one 5hould be able to smash any transient errors to zero more rapidly than

by any other means. For the first reason, such servos are in fact exten-

sively used; but it seems to be the opinion of many experts that the second

reason is not sound, for such an intense, "bang-bang" servo is too crude to

give a delicate response. and is prone to display several kinds of highly

undesirable behavior: high-frequency. low-amplitude oscillations ("chat-

tering"), medium-frequency oscillations of constant or increasing amplitude

("hunting"), and others. But naturally all this depends on the character

of f , and there is no reason to deny the possibility that there may exist

some function f or class of such functions which would avoid these un-

pleasant phenomena and, in fact, give excellent performance. It will be

proved below that there do exist such functions and that there even exists

a unique such function f which gives the best possible performance, where

"best possible" has a certain natural and definite meaning. This will in-

deed be shown for the more general equation

m±4* +r dx+cx ýD-f x4~l?.) ,(2)

dt

where m , r , c , and D are constants and f (x, ) -1. This equa-

tion can be put into one of Lhe three simple forms
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dtu du • du)

d " + 2b T +u #(ýU d
d-r-

d d T (2")

,2 du edu +-
Q *2bL-u = e kUidr (21 )

dr d

by choosing the proper units for time (t) and error (x), according as c

is positive, zero, or negative. (The constants m and D are assumed to

be different from zero; it is no restriction of the generality to suppose

that they are both positive.) For instance, to get (2') from (2) when

c > 0 , put

D t b 1 rD
X-U , Vc , b-cV c 2 cVf -

The problem which will be treated in this paper is:

In

2
d 14+ g x,) d#x,) ,(3)

dt

where g(x,y) is a given function of class C1 and O (x,y) is a function+

which assumes only the values -1 , how should ý(x,y) be chosen so that

the solution of (3) for any set of initial conditions (xo 'o) i = ,-)

reaches the state x = O, i = 0 , and in fact reaches it in less time than

for any other choice of O(xy)?

(In terms of our mechanical example, this means; how should the feed-

back circuit be designed so that if the output suddenly undergoes a dis-

turbance which results in a certain error and rate of change of error, then

these two quantities are brought back to zero simultaneously and as rapidly

as possible?)

A restricted form of the problem has been thoroughly studied by a

group of people represented by I. Fligge-Lotz and K. Klotter (see the
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bibliography); they treat the equation (2') with 0 < b < 1 and assume that

Shas the special form

S6 (x,y) = sgn(Kx + My)

where sgn is the function whose value is +l for positive argument and

-1 for negative argument, and K , M are constants. Their results will

be outlined in HI, where it will appear that in this case the problem as

stated above is insoluble and that the problem of choosing the "best" 4,
i.e., the "best" values for K and M, becomes one of avoiding as many

undesirable phenomena as possible. The "best" 0 so determined indeed de-

pends for its efficacy on the assumption that the equation (2') gives an

essentially incomplete description of the physical situation, that in fact

"time lags" occur. D. McDonald (McDonalQ (1)) has discussed the problem

for the equation (2") with * again general and has stated the correct re-

sult for this case, on the basis of a heuristic argument. Except for these,

no results have been given for the problem stated above.

The first principal new result of this paper will be Theorem 1, which

greatly restricts the class of functions 0 (x,y) which one needs to con-

sider in seeking a solution; then, on the basis of this theorem, the problem

is solved for all linear g(x,y) . After this something is said abcut the

nonlinear case, and the paper concludes with brief discussions of some dis-

tinct but closely related problems.

It should be remar-ked that the problem admits of various generaliza-

tions, for none of which significant results are known. For example, one

can consider a higher order differential equation, say of order n (n > 2)
dx dkx(k<n

and require that on any solution the quantities x , . ... d (k c n)

should at some instant vanish simultaneously and in the shortest possible

time; or one might consider systems of equations, each involving a dif-

ferent function of the type 4)(x,y) , for exaile:

2
d14 + g1 (x,,,y4{) Sl

ddx d t ay c

dt

2 YdY dty

dt
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(This would represent the problem for a mechanical system with two degrees

of freedom with coupling.) Problems of a different character arise when

one remains with the equation (3) but supposes that the externally caused

errors are not of the simple, square-wave type we have considered, but of

some more intricate but statistically describable type. In view, however,

of the difficulties involved in dealing with the simpler problem here dis-

cussed, the possibility of obtaining significant general results for the

more complicated problems seems, at present, rather remote.

Terminology

The equation (3) is equivalent with the system

dx
dt Y

(4)
dt (x,y) - g(x,y)dt

where g(x,y)e C1 and O(x,y) -l.

Suppose for the moment that ' (x,y) +1 o Then the system (4) has

a unique solution through every point (xoY) of the plane; in other words,

the family of curves defined by (4) witia 0 (x,y)--- +1 covers the entire

plane exactly once. This family of curves will be called the P-system

(P for positive), its curves P-curves, and the arcs of its curves P-arcs.

TIn the same way, when r (x,y) = -1, one gets another family of curves
covering the plane; this is the N-system (N for negative) and N-curves and

N-arcs are defined correspondingly.

A positive direction of motion (an orientation) on each P- or N-curve

is automatically defined in terms of t

Now if ' (xy) is allowed to be as before, i.e.. any single-valued

function whose domain is the entire plane and whose range is confined to

the values of -1 , the classical theory of differential equations does not

provide a definition ior the notion of a solution of (4). If ý (x,y) is

simple enough it becomes clear how such a solution should be defined; but

when 4 (x,y) is general this is not so clear, and some care must be taken.
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The definition which follows seems best. It is expressed mainly in geometri-

cal terms, but the translation to analytical language is easy.

Suppose that p = (x y is the point from which the solution is

sought, and suppose 4(Xoyo) +1 . Then one of the three following mu-

tually exclusive possibilities must be realized:

(i) There exists a P-arc begining at p of positive length along
wnich (P (x,y) ý +]

(ii) The condition (i) is not satisfied, but there exists an N-arc from

Po along which "(x,y) = -i (excluding n

(iii) Neither (i) nor (ii) holds.

If (i), either there exists a first point after p0  on the P-curve

from p at which * (x,y) changes sign. or there does not. If there does,

the solution is defined to begin with the P-arc from p to this point p 1

If there does not, the solution from p is defined to be that part of the

P-curve through p which follows p, (the P-semicurve from p ).

If (ii), the preceding paragraph should be applied with i, in place

of P .

If (iii), no solution from p is defined.

Cases (i) and (ii) thus ±eao either to a definition of the entire solu-

tion from p , or to a definition on the solution up to sorre definite point

p, = (x',y 1 ) . In the latter case, tne above process should be repeated,

with p. in place of p , the letters p •',' N interchanged, the numbers
-i interchanged, and the phrase "excluding p1 " added at the ena of (i).

This will lead to the same ..richotomy: either the Solution is not defined be-

yond p, , or it consists- of a whoz-e N - or P szmicurve b,•ginning at p1 1 or

it fol-ows p, with a :;nfirite a_-c pIp 2 . Then the whole pr'ces5 should

be applied to p., (when this point occurs; othter-..'se there is nothing left

to do); but now P . N . and -1 should be in their original places. This

either accounts for the rest of the solution. or leads to a point p 3  like

To be precise, let x(t) , y(t) represent the P-curve such that x(O) = x0,
y(O) y , and let T z- inf (ti t > C , #[x(t), = *.j. Then
the "firSt point" iientioned is (x( r ),y( r
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P1  which should be treated like p1 ; and so on. The whole curve obtained

in this way is, by definition, the solution of (4) from Po "

if O(xo, Yo) = -1 , the solution from p0  is dr~fined ccrrespondingly.

If each of the points p (n = 0, 1, 2,...) is assigned to the adja-
n*

cent P-arc if *(xn, yn) = +1 . the adjacent N-arc if n (xy) n -

then the solution of (4) from p0  consists of a countable (possibly finite

or even vacuous) well-ordered sequence of alternating F- and N-arcs such

that the initial point of the first arc is p0 , the terminal point of each

arc is the initial point of the next, and c (x,y) = +1 on the P-arcs,

-1 on the N-arcs.

The solution of (4) from a point p , if it exists, is unique. This

follows at once from the definition ana the fact that P- and N-curves are

unique.

It is also easy to see that if A is the solution of (4) from p , and

p' is any point on A , then the solution from p' is that part of A

which follows p

From these facts it follows in turn that a solution cannot intersect

itself at a point p unless it is periodic beyond p . (Here a solution

can be "periodic beyond a point" without being completely periodic, despite

the uniqueness, because our solutions are defined only unilaterally.)

A point on a solution which is the terminal point of a P-arc and the

initial point of an N-arc will be called a PN-corner. NP corners are de-

fined analogously.

II. LINEAR SWITCHING

Linear switching occurs when 0 (x,y) = sgn(Kx + My), i.e., when

S (x,y) = 1 in one of the half-planes determined by the line Kx + My = 0

ana -1 in the other. This case for the equation

d x ,.dx /dx~cb-• b-2b +x Y x,- (0 c b <l) (2')

dt
*if, e.g., (XinY + while the two adjacent arcs are both N-arcs,

P n is to be regaraed as a degenerate P-arc.
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has been thoroughly discussed in several papers (Yligge-Lotz (l),(2);

FlJgge-Lotz and Klotter (1)). The summary of their results given in this

section (based on Flhgge-Lotz (2), Chap. 4) will serve the double purpose

of showing how much can be done with such a 0 (x,y) and of displaying

some of the unwelcome phenomena that can occur in such problems.

In this case (4) becomes

dx
y

=-x - 2by + sgn(Kx + My)
dt

The constant b is taken as fixed, and the focus of attention is the

pair of constants K , M . We shall suppose that they are both different

from zero; what happens when either of them vanishes is essentially the

same as what happens in one of the other cases. There will then be four

cases to consider, as tabulated:

K >O KCO

M -O I IIi

M < 0 II IV

As is well known, the equations for the P- and N-curves belonging

to (5) can be explicitly computed; they may be expressed in the forin

-bt ict -iat +
x(t) = e (Ae + Be ) -1

(6)

y(t) =-e-bt [(b - ai)Aelot + (b + ai)Be-iat]

where a = +f - b2 and

1 r -]

A- 1 y(O) + (b + ai) I[(o) il B A (7)

Wherever an equivocal sign occurs, the upper sign pertains to the P-system,

the lower to the N-system. These equations represent spirals spiralling

into the foci (:1, 0).
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A solution of (5) can thus be obtained explicitly in terms of a se-

quence of formula pairs (6), defined on successive intervals Df time, each

representing that part of the solution between two successive zeros of

Kx + My.

Case I. In this case the "switching line" Kx * My = 0 passes

through the second and fourth quadrants. To the right of it, ý (x,y) =+1;

to the left, -1. Thus a solution consists of a sequence of arcs of spirals,

each with its focus on its own side of the line Kx + My = 0 and its ends

on this line.

The condition for the existence of a periodic solution is that there

should exist (say) a P-arc of the type described whose end-points are

-l +1
L x

CASE I

equidistant from the origin; for then, by symmetry, there exists an N-arc

on the other side of the switching line joining the same two points, and

these two arcs together form the periodic solution. We shall see below

that a periodic solution can occur in our case.

Let Sp, SN be the points on Kx + My = 0 where a F- and N-curve

respectively are tangent; let R, and R be the last intersections pre-

ceding Sp and SN with the switching line of the P- and N-curves through

these points. S. and SN are symmetric with respect to the origin, as

are 14 and R. Suppose that b, K, and M are such that N. is out-

side the closed segment SSN ; then the situation is as shown in Figure A

(next page). ; solution starting sufficiently near the segment SPSN will

move away from the line in one direction or the other -- according to the
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A ~y

/

J I

S+/

•'• I ]Kx +-My =0
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side of the line on which its initial point lies -- and never return to the
switching line at all. Since solutions can only start near SP S , but can-

not cross it, the points of this szgment are called start points. (Strictly

speaking, -t (x,y) is not defined in this segment, so that one cannot speak

of a solution starting on it.) Also, since any solution starting in this

manner does not return to the switching line but merely spirals aown to one

focus or the other, such points are also rest points; the control represented

by the function * is at rest on the solution from such a point. It is

easy to see that the points of %Sp and SRP are also rest points, but

net vtart points. In general, irrespective of the values of b , K , and

M (for Case I), the segments SpRP and N, consist of rest points and

the segment S S consists of start points, as one can easily convince him-

self.

In the case illustrated in Figure A no periodic solution can exist;

for it can be snown that every P-arc wnich lies to the right of the line

Kx + My = 0 and has its ends on this line also has the property that its

terminal point is nearer the origin than its initial point; thus the condi-

tion for a periodic solution can never be satisfied.
If, however, R and R0 are on the segment SpS (Figure B), then

i'. tint ists a periodic solution. This may be seun as follows: the parti-

cular P-arc SP cegins nearer the origin than it ends, by assumption;

but P-arcs which begin sufficiently far from the origin on toe switching

line have tne reverse property; tnerefore, by continuity, some intermediate

P-arc of this tyue must begin and end at the same aistance from the origin;

and this is exactly the condition for a periodic solution. Extended analysis

bears this cut, and shows that the periodic solution is unique and orbitally

stable. All solutions beginning outside the periodic solution spiral onto

it, and those solutions which begin inside the periodic solution but outside

the shaded area (which represents rest poitts) also spiral onto it. When

there is no periodic solution, as in Figure A, all solutions have finitely

many corners and then upiral down with no further c-rners to one of the foci

(-1. 0). Obviously, none of these kindo of behavior is welcome in terms of

the problem at hand.
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Case II. This case differs from the first in that the switching line

Xx + My = 0 now passes through the first and third quadrants. The arcs

which occur in solutions are as in Case I. No periodic solutions occur in

this case. Let R k' , S I SN be defined as before; then the points

RP , SP , 0, lie on the switching line in this order. The inter-

vals RPSp and SN% are easily seen to consist of rest point3; but on

the interval SpSN a new phenomenon occurs. Consider any solution which

reaches this interval, say at the point E. What does the solution do at

Y
Kx+ MY 0

N

S " P +1
'NN

_/

thi pont It shul hav a x-o ra ori a ece

/
/

point where ý changes sign; but the N--curve from E goes back i'nto

the same half-plane from which the solution entered E , and on this

side a solution can contain only P-arcs; on the other i~and, the solution

certainly cannot follow the P--curve through E beyond this point. Thus

the solution is not defined beyond E; it end3 at E . For this reason.,

such a point is called an end point. In a manner of speaking, end poi-its

are inverted start points and, like start points (but unlike rest points)

can occur on the switching line only.

Any solution starting outside the region just considered spirals in

toward the origin until it reaches a point on the interval %,Rp P beyond

which its behavior i3 determined by the above considerations.
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In practice, due to mechanical traits of the physical system involved

whach prevent it from obeying our idealized hypotheses exactly, there arises

a txme lag, this means that a solution meeting the line Kx + My - 0 ac-

tually proceeds for some distance beyond it before it has the corresponding

corner. In Case I such a time lag, provided that it is not too large, does

not affect the essential behavior of the system; such a system might there-

fore be said to be "structurally stable with respect to time lags." But in
Case IT the presence of a time lag does make a difference; for consider a

solution entering an end point; because of the time lag, it no longer ends
therýe, but proceeds for a certain distance beyond and then has a corner,
wher-e a solution is still defined. From this corner it crosses the switching

line in the reverse direction, moves for a short distance beyond, has another
corner, and so on. The successive intersections of such a solution with the
s witching line move away from the origin, so that sooner or later one of bhe

corners lies in the set of rest points, and from this corner the solution
proceeds to spiral down, without further corners, to the corresponding focus.

(See the picture below.)

y+ My 0

1+1

/
CASE II WITH TIME LAG

1Ihe situation in Case II can thus be summarized as follows: In the ab-
sence of time lagz, every solution either terminates in an end point on S
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or it eventually spirals down to one of the two foci (-1, 0). In the presence

of a time lag, all solutions behave in the latter way. Thus Case II is also

unfavorable from our po-it of view.

Case III. In this case the switching line lies as in Case II, but the

arcs which occur in solutions now belong to spirals about the focus on the
side of the line opposite from the arc itself. In other words, P-arcs occur

on the left, N-arcs on the right. In this case a stable periodic solution
always exists, and it dominates the whole situation, for all other solutions

spiral onto it.
Y

CASE III
That a periodic solution exists can be seen as follows: consider the

two arcs BC and B'C' , where B lies

very near the origin; then

c But. by the character of the spirals,
I +f 1B is far eiough out

/ ~'- o-B,,:

Thus, by contiriuit:,, Lhere must Ue an
intenr-ediatie arc ,!11( " such th;t
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67C" - " - 0 ; but this, as pointed out earlier (p. 9), is-exactly the

conditic-n for the occurrence of a periodic solution. An extended discus-

sion of such periodic solutions can be found in Bilharz (1)1 quantitative

information about the particular periodic solutions arising here, for

varying values of the parameters, are given in FlUgge-Lotz (2).

The behavior of the solutions within the periodic solution is simple

enough. It is clear that, if S and SN are the points of tangency defined

as before, the segment SPSN consists of starting points. A solution

starting frum such a point (in either direction) simply spirals out to the

periodic solution; and since the totality of solutions obtained in this

way covers the interior of the region bounded by the periodic solution,

there "are no "other solutions to consider. (See the picture below.)

y
+ Ky0

CASE III NEAR THE ORIGIN

Thus all solutions spiral onto the periodic solution and this, from

the point of view we have adopted, is also unfavorable. It may be seen that

in this case, as in Case I, we have "structural stability with respect to

time lags"; i.e., thie presence of a small time lag would not change things

essentially.

Case IV. in this case the switching line is as in Case I, the arcs

of solutions as in Case IlI. It may be shown that no periodic solution

can exist in this case; in fact, every arc with its ends on the switching
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lino has its teAtinal point nearer the origin than its initial point, and

the condition for a periodic solution cannot be satisfied.

S
N

+1

S
P

S

CASE IV WITHOUT TIM IAG,

In this case the segment consists-of and points, and by tracing
SPSN

the solutionB which end on it backwards one can see that these cover the

entire plane; thus in this; case all solutions and on the segmen S A 2f_

the switchLmg line.

But here again, as in Case II, the presence of a time lag makes a
difference. The time lag makes no difference of importance until the so-

lution in question reaches S then, instead of ending, the solutionPSN;
proceeds for some small distance beyond the switching line, has a corner,
recrosses the switching line, has another corner, and so or.. It may be
seen that the -juccessive points of crossing obtained in this way have the
property -,ha-z. each is closer to the origin thAr its predecessor, until one
of them Lies on -,he other side of the origin. After this has happened the
solution oacillati3a around the origin in a more or less irregular way, but

with a high mear. -requency and small mean amplitude. This is the most
favorable of the possibilities so -far considered, for every solution Moves
into the origin with the passing of time., and this irrespective of the mag-
nitude of the constz:nts b , K , and M . But the manner in wh1ah it does
so is unsatisf actcx-y, f or it involves a rapid fluctuation in the sign of
("chattering") which', in general, continues indefin-itely.
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Thus. at best, linear switching leads to solution behavior which, both

qualitatively and (as we shall see) quantitatively, is far from perfect; it

will be shown later (Theorem 7) that all its defects can be avoided by taking

a different kind of .

y

-1 +1

YM• + Ny =0

CASE IV WITH TIME LAG

IIT. THE MINIMAL 1HEORY; GENERAL CONSIDEkIONS

We now return to the problem stated at the bottom of page 3. if the

second order equation (3) is replaced by the equivalent first-order system

(4), the problem may be described as that of finding a function 4 (x,y)

such that for any point p in the x,y-plane the soluticn from p of

&. (X, Y) --g(X, y) LP - g F_ Cjct dt

has the following properties:

(i) it passes through the origin (x y = 0);

(ii) the length of time necessary to move from p to the origin along

the solution from p is minLmal with respect to • ; i.e., no other

could make this time shorter.

(The parametrization of a solution in terms of t is naturally in-

duced in the obvious way by the known parametrization in terms of t of

its component arcs; thus the "time" required to move from one point on a

solution to another which follows it is a well-defined quantity. )
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The object of this section is to study the problem in this general

form. It will first be shown how the problem is equivalent to one of a con-

ceptually simpler character, and then (in Theorem 1) it will be shown that

this problem in turn can be greatly simplified.

It has been pointed out that a solution of (h) consists of a sequence

of alternating F- and N-arcs, the initial point of the first being the ini-

tial point of the solution, and the terminal point of each being the initial

point of the next. Our point of view will be to consider, for an arbitrary

point p in the plane, the class of all curves of this kind which begin at

p and pass through the origin; and our purpose will be to find in this

class a curie along which the time necessary to reach the origin is shortesat.

Thus we make the following definitions (the function g(x,y,) , and there-

fore the P- and N-systems, being fixed):

A path from the point p is a finite or countable, well-ordered se-

quence of alternating P- and N-arcs such that:
.

1) The sum of the lengths of the arcs is finite (= T

2) The initial point of the first arc is p .

3) The terminal point of each arc is the initial point of the next.

4) If there are finitely many arcs, the terminal point of the last

arc is the origin; if there are infinitely many, then

x(t) - 0 and y(t) - 0 as t - r ,

the curve composed of the arcs being parametrized in the obvious way in

terms of the parametrization of the component arcs.

5) No two of the arcs intersect.

(In order to avoid a conflict between 3) and 5), we regard each arc

as containing its initial point but not its terminal point; this convention

will have no effect on the time-length characteristics of paths, and there-

fore does not really restrict the generality of what follows.)

"Length,"'longer," and similar expressions should be understood to refer
to time, not geometric length, here and throughout what follows.
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A path from p can therefore almost be described as a curve Which

could occur as-that part of a solution from p (for some • ) which con-

nects p with the origin. "Almost." because 5) need not hold for a solu-

tion of (4). This point will be cleared up presently.

A path from p which is not longer than any other path from p will

be called a minimal path from p .

In order to solve the problem stated on page 17 it is sufficient to

find a unique minimal path from each point p

Namely. one needs only to'define • (x,y) = ,-I on P-arcs which oc--

cur in the minimal paths, and 0 (x,y) = -1 cn the '-arcs which occur in

the minimal paths. (ý-(0,0) is to be left undefined, or it can be given

either value.) Such a 0 (x,y) automatically yields the minimal paths as

solutions, and the minimal path from a pointris, by definition, the shortest

possible solution connectipng p with the origin. Two things must be veri-

fied: (1) that this method defines ý (x,y) uniquely at every point except

the origin, and (2) that notning is lost by leaving out of consideration

those possible solutions for waich 5) fails.

To verify (1), observe first that every point p must lie on at least

one minimal path, namely the minimal path which beguins at p . Thus * (xy)

is defined everywhere. I2 there were some point at which it failed to be

unique, then this point p would need to lie both on an N-arc belonging to

one minimal path A (from the point a I and on a P-arc belonging to an-
a

other minimal path A- (from b ). Denote those parts of A and A w.idab ab
lie between p and the origin by A' and A' respectively; then their

a b
time lengths T(L' a) and T(A' b) stand in some relation to each other,a)a
say r(A' ) T(A'b Then r (A - A + At. • r . k TA'

a b b b a" " b a
may not be a true path (for it may cro:;: itself), but a true path A may

be obtained from it by cutting out whatever closed loops or retracings it

may contain; and obviously r (") * r(Ab), which contradicts the ass-up-

tion that AZ was the unique minimal path from bb
'I. check (2), it will suffice to show that any curve A which might

occur as a solution connecting p with the origin and faling to satisfy

5) can be replaced by another such curve, at least as short, which satisfies

5) and is therefore a path. Let A be as described, and let A' be the
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path obtained from A by cutting off all of A beyond the first intersec-

tion of this curve with the origin. A, contains the origin just once, and

ends there; since A is not longer than A , it is enough to show that A'

satisfies 5). Suppose the contrary; if A' interse-ts itself at a point

q beyond which, by page 7, it is therefore periodic, it follows that A'

contains the origin at least twj cet once foliowiDng the second passage

through q (for A' ends at the origin) and therefore on the period con-

necting the first passage of A through q with the second. This is a

contradiction.

The problem with which we shall actually be concerned is therefore

that of finding a unique minima2 path from any point p , given the func-

tion g'x,y)

A path will be called canonical if it contains no NP-corners (see

p. 7) above the x.-axis and'no PN-corners below.

Theorem I. Given any p2ath A from p which is not canonical, one

can find a canonical pat.h from p which is shorter (in terms of time)

than A.

Proof. (In saying that a corner lies above or below the x-axis, we

mean that :the arc- adjacent to the corner are, for -alues of t suffi-

ciently near the value corresponding ÷o the corner it3elf, above o:r below

the x-axis respectively- the corner It...., regarded a a point, may thus,

lie on the axis.)

The id-a of the proof P- simp'-e given, say, a path with the hP--

corner p abate tho x.-axis, on denotes hy p i4t.her the last corner of

the path preceeding p or the 2a3t "ntersection prpceding p of the path

with the x-axis; (whicb4 ve, ii.,. nearer p ),
and deno+es by p" tho corresponding poin't

N with 11"C01?wingI" un nnaci of "preceding" and
P "firfjt" in placfe of "l.ast." One then draws

p P. th- P---trv-- fcrward fr'ri pf and tbe N-curve

b'i;kward from pr ", thereby obtaining a four-

. ided figure a3 Thhown. If one now modifies

the given path by replacing pWpp" by p 'p"',
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the NP-corner p is removed, no other such corner is introduced, and the

path is shortened. To see this last fact, note that. by (4),

r (P'PP") = fT , (pIp 'llpt) 5 dx

(These two integrals must converge, for the quantities T(p'pp") and

r(p'p"'p") are obviously finite.) However, y is greater (for a given

value of x ) on pipt'lp" than on p'pp" ; therefore the second integral

is smaller than the first, as was claimed. Thus if one applies this pro-

cess to every NP-corner above the x-axis, and the corresponding process

to every PN-corner below the axis, one obtains a canonical path shorter

than the given ones

Two things must be proved-, (1) that it is always possible to con-

struct the "quadrilateral" of the type shown; and (2) that the process

described does not produce any self-crossings, so that a true path is in

fact obtained.

Let, p , p' , and p" be as described above; if the initial point

of a path is regarded as a corner, p' always exists, and p" always

exists since the path goes to the origin'. It will be shown first that

the P-semicurve D beginning at p' passes over p'pp" and crosses the

vertical line through p" . That 11 moves to the right as long as it

remains above the axis follows from the first equation in (4). Suppose

that f, is paramntrized by t in such a way that t = 0 gives p' ;

then fl has one of the following two properties:

(i) H goes arbitrarily close to the x-axis as t -co (i.e., it

either crosses the x-axis for some t > 0 or 1Intinf y(t)[on n] = 0

(ii) 1 goes to infinity in the sense that

sup (XI (xy) n +

For assume that (i) is false; then there exists a number c > 0

and a value t > 0 of t such that for t > t y(t)[on .1] >
dx

Since --d y , this gives
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t
x(t) =x(t) +5 y( r)dr > x(to) + e(t - to)- x

X~) +f0 0 coa t o
t

0

so that (ii) holds.

Since, as t increases, D moves steadily to the right, it is clear

what D] must do; it must either move off to infinity as in (ii), or cross
the x-axis at-some point, or tend-to some point on the x-axis as t--.-Co

rl starts off from pt above p'pp" , for in the upper half plane

the P-curve through a point always has a greater slope there than the N-

curve through that point, and even if p, lies on the x-axis (whereupcn

the two slopes are "equal" ..-. both infinite) the radius of curvature of the

P-curve at p' is greater than that of the N-curve0  (All this follows fran

(h);in particular, the fact that we can talk about radii of curvature fol-

lowsvfrom the fact that g(x,y) C C , so that x(t) and y(t) -- the func-

tions defining :'D -- have continuous second derivatives.) 11 cannot cross

the N-arc p'p , by what was just said about slopes; it cannot cross the

P-arc pp" , for P-curves are unique; and it cannot tend as t -co to

either of the points p or p" (one or both of which may be on the x-axis)

for this would imply that the point concerned would be a singular point of
the P-system, which would in turn belie the fact that both points belong to

the ordinary finite P-*arc pp" . Thus all that was claimed for D is true.
Mi

... The corresponding argument can be applied to N , the N-semicurve ob-
tained by following the N-curve through p" backwards, and it turns out

that it too lies above p'pp" and, in particular, crosses the vertical line

through p1 . Thus 11 and N must intersect at least once. That they in-

tersect only once may be seen in peveral ways, the simplest of which perhaps

is to observe that if they intersected twice (with no other intersections

between), one of the intersections would involve a crossing with the wrong

inequality between the slopes. Thus we obtain the unique intersection p"'

and the "quadrilateral" sought.

This proves (1) on page 21. To prove (2), we note first that in the
process just discussed (and its complement for the lower half-plane) the

upper and lower half-planes are treated separately, so that in looking for

possible self-crossings introduced by this process we need only consider
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(say) what happens to those parts of the original path which lay above the

x-axis. Let H1 and H2 , then, be any two parts of the original path,

each contained between successive points where the path crosses the x-axis

and in the upper half-plane. It is clear that the process for removing

NP-corners cannot introduce self-crossings in either of the separate pieces

H1 or H2 ; hence it is only necessary to show that the process can not

cause H to cross H2 . Since H1 and H2 do not cross, their ends

a , bI, a 2 , b 2 on the x-axis must lie in one of the following orders:

(1) a1 , bI , a2 , b2 ; (2) a1 , a2 , b2 , b, ; (3) a 2 , a1 , b, , b 2 ;

(4) a 2 , b 2 , a1 , b, . (1) is essentially the same as (4), and (2) as (3),

so we consider only (1) and (2).

Our process has the property that it leaves the points where the given

path crosses the x-axis unchanged; no such points are removed, and none are

introduced. Therefore the curves H-' and H2' belonging to the final
12

path and obtained-from HI and H2 by the process have the same ends on

the x-axis as before. Now in case (1) there is nothing further to say, for

H.' lies entirely over the interval (a.,$b.) (i = 1, 2); since these inter-
2.3.1

vals are disjoint, Hl' and H2' cannot intersect. In case (2), Hl' and
1 21

H2 ' must beas shown; each H.' consists

FC1 of a.P-arc followed by an N-arc (one of
which might be vacuous). Suppose they

2 0intertected; say the intersection oc-

2 curred on the arc a2c2 . Then, since
a a b b
1 2 2. 1 a 2 c2  cannot intersect alc1  (both of

them being P-arcs), a 2 c 2 must inter-

sect c-b; by the previous argument about slopes, these two arcs can only

intersect once; therefore c 2b2 must intersect clbI , since b lies be-

tween aI and b But this is impossible, for these are both N-arcs..

The same line of reasoning applies if c 2b 2 is assumed to intersect a1 cI.

Thus Hl' and H2' are disjoint, as claimed; and this completes the proof

of Theorem. 1.

Corollary. In seeking a minimal path from a point it is onl neces-

sary to consider canonical paths from that point.
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For it follows directly from Theorem 1 that a path which is minimal

with respect to the class of all canonical paths is also minimal with re-

spect to the class of all paths. 1r-.,-:. this poLnt on it will therefore be

tacitly assumed that all paths mentioned are canonical.

If g(x,y) has the particular property that g(--x,-.y) --g(x,y ) ,

there is more one can say. For then, if in the equations

dx
xdt 4 (x,y) g(x,y) (4)dt dt

we make the substitutions x -X , y = -Y , •(x,y) -. (XY) , we obtain

d-= d xY = g(XY)

dT ' dt

i.e., equations of exactly the form 4L). This means that if p and q

are two points symmetrical with respect to the origin, then whatever can

be said about the P- and N-curves at p can be said about the:-N- and P-

--curves at q . (E.g., if it-can be prov-d' that a minimal path from. p

must begin with a P.-arc, it follows at. onc• that a rrinina4i path from q

must begin with an h-arc.)

Since g(x,y) always has t~he property mtntioned when it is linear

(homogeneous), ant' g(x,y) will be of 'this ty.pe in most of what follows,

this observation will find extensive use. Any esult obtained from an-

other. by an appeal to it will. be said t0 have been obtained by symmetry.

IV. THE MINIMAL THEORY: g(x,y) = by

This section begins the .ystemat.i' ;-t;Ady of the proba.r discussed

in III for the important case thJt gkx,y) !j linsar. By page 3, it wil2.

suffice to suppose that g(x,y) has one of the three fonrm by , x + by

-x + by , where -Lt each case b is an arbitrary re al conxtant. In !.Vi:s

section we study thr' first of these; _Jt. arise., from the physical exanple

given at the very outset and, of coi-'se, in many other ways. The correct

solution of the problem for b ? 0 has, been previously stated (McDonald

(1)), but without a convincing argument..
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The character of the P- and N-systems associated with the equations

dx d 4(x,y) - by
dt dt

depends, of course, on the value of b ; but this much can be said: since

the left members (disregarding 4 ) depend only on y , all the P-curves

can be obtained from any one of them by translation along the x-axis. The

same, of course, can be said for the N-curves, which are in fact obtained

from the P-curves by reflection in the origin.

The P-curves determined by the origin and (for b / 0 ) the point

(0,2/b) for representative values of b are sketched below; that the solu-

tions have the qualitative properties involved can be easily verified.

y b F

b<O bb0 b > 0

When b c 0 , something strange (but not unexpected) occurs: there

exist points from which there are no paths. More precisely, a path from
1-

the point (x 0 ,yo ) exists if and only if j c -b . For suppose

Yo < b 0; then

Ar j+ 4
-1z by0 < -I-i< U.

dt 0ryYo

This means that once any curve, P- or N-, is below the line y b- it

stays below; thus no path from such a point could cross this line, as it

would need to do to reach the origin. Similarly for any point above the

line y = -b- 1 > 0 . That paths exist from any point between the two

lines will be seen below.
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When b >, 0 , a path can be found from any point, in the plane.

We shall denote by F that part of the P-curve through the origin

which lies below y = 0 , and by r- its reflection in the origin. w-
is therefore that part of the N-curve through the origin which lies above

y=-O .

Theorem 2. (g(x,y) = by.) Let C = F-+ o + F . This is a simple

curve which divides the plane into an upper and a lower cart_ The unique

minLmal path from any point p above C (and below y -- b - , if <0)

is obtained by following the N-curve from p until it reaches C(F) and

then following F into the 2lin. If p lies below C (and above

y = b"I , if b c 0 ) the unique minimal path is. given by following the

P-curve from p to C(F) and' then following - into the origin. (The

solution of the original probl,, is to take q .. above C and on

F; +1 below C and on F .)

Proof. Note first that if pq is an N--arc with p on the x-axis

and qr is the F-arc from q back to the axis, then r(pqr) , the total

time length of this pair of arcs., i a monotone inc-reaszing function of the

distance between p .nd _r , or equivalently of the area bounded by pqr

and the segment pr of the axis:; for r (pq) and r (q-) ire both in-

creasing fumctions of -*y , yq being the ordinate of q ý buit this in

turn is such a function -_f the two quantitie. rrenTioned.

We sh-a denote- that path ...-. r p which, according to the theorem,

is minimal by ,o The rest of' the prf will. be broken up .tro severalp
parts.

A. If n its nn the pyAttiva hal" of the x axi?., A is the

unigae mni--rai path from p

Let A be any .path £ro?7 p oath Ir tan..arl A o By page 2h1, ! P.;aS
p' p p

no PN-.corners below thie &xis o- NP-corners aovP". therepore start.s o-t

from p with an N-arn pq , ,;nich+ w- mnaý (see b1low) aHsume to h-e of posi-.

tive len.gh; q therefor. ii-- be' w the axis. Frc.m q the path follows

a P-arc qr whit' cross'-s th;r axi-o CT.- wuýro the origins, w? would

ha.e A ; and if r a; n ." b& ow the xi axis elsewhere, i wouli be a

corner f --the P•xzljudci t.pe.) LeD -Ie int-erset.-ion .. ' qr -itb the x- axis
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be v . The N-arc of A fran r , say rql , again crosses the axis orP

ends at the origin, for similar reasons; and so on. By continuing this

kind of reasoning, and recalling that A does not cross itself, one die-
p

covers that A must be of the form shown. (To see what happens when theP
initial arc of Is is a P-arc,' think of v in place of p .) In orderP

for this path to reach the origin.
rI
r sooner or later on6 of the points T n

0 2 ''r P p must lie at or to the left of the

origin.* If pn is that intersection
of 6 p with the x-axis which immedi-

q2* ately precedes a vn for which this

happens, then pnqnVn is an arc-pair of the type discussed at the be-

ginning of the proof, and n is clearly lower than the NP-corner of Z

hence T_(A ) > r (pnqnvn) ' r(E ) , which shows that A is the unique
p nunvn p pminimal path from p *

B. If p lies below y n0 and above P (and, if b > 0,

above y = -b ) then the unique minimal path from p is ASp

Suppose that A were a path from p such that r (A ) < rO(K_)
p p p

One can join p to the x-axis by following the N-curve through p back-

wards. If the point on y = 0 reached in this way is p' , then pp:+A

is (after the elimination of any loops, etc., that it may contain) a cer-

tain path (not necessarily canonical) from p' , say A : then, p1

r(6p) , r (pp + ) r(pp') + r(A_) T r(pp') + r(t)
p p

and this contradicts the fact (from A) that ' is the unique minimalpt

path from p' .

C. If p lies below y = 0 , to the left of r , and, if b / 0,

above y -- -ib , then ý' is the unique- minimal path from p

They cannot merely approach 0 as a limit point, for this would imply
the existence of infinitely many pieces like pnqnvn ; but each of these
pieces would be longer than the innermost one, so that the length of the
entire path would necessarily be infinite.
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Consider any path other than Z from p ; it starts out from pp
with an N-arc pq (necessarily lying entirely below y - 0 ) and from q

follows a P-arc across the axis; but beyond this crossing, by the result

obtained from A by symmetry, we may suppose that the path simply goes to
a point r on r and then follows

P into the origin. Let the inter-

section of qr with the axis be v
r then -x , and therefore r (vrO) , is

V

0 a strictly increasing function of

p rT(pq) * likewise, since k <0 on
dt

the N-curve from p , T (qv) :Is
such a function of r(pq) ; alto-

P gether r p) is thus an increasing

function of r(pq) , and therefore
takes on its least value when r(pq) = 0 ; but this gives A o

A , B , and C prove the theorem in the lower half-plane for every

case but that in which b > 0 and p lies below y = -b The proof

in B breaks down for this case because the N-semicurve ending at p

does not reach the x-axis; the proof in C fails because dy> on the

N-semicurve beginning at p . This bothersome case will be dispatched

by proving a sequence of statements:

DI1. L path from a point above P and below y = -b-1 (b > 0)

must begin with an N-arc which reaches r

For if a path p began with an N-arc which fell short of r (if,
in particular, it were vacuous),

the succeeding P-arc could not

enter the origin, but could only
cross the axis to the right of

0 and break off in a corner

--- yn .b-I above. The N-arc from this point

must again cross the axis, but it,

as well as any P-arc following it,

stays above the line y - -b l

thus such a path could not get to
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the origin without crossing itself.

D2 If p is a point below the line y-- -b-I (b > 0), and A
2' p

is a path from p which starts along an N-arc pq , follows the P-curve

from q to 17 and then follows r- into the origin, then r(6p) is

a strictly increasing function of r(pq) .

Let the PN-corner (on r- ) of A be r , and write X = T(pq) ,P d( ++)0

r = (qr) , o- = r(rO) ; then it is to be proved that d (X+ .t+a)>0.

The best way to do this seems to be the following: it is easy to verify

that the P- and N-systems are given by the equations

x(t) = A + Be- y(t) -bBe -; ,

where

A y(O) + ) + x(O) B B- )

the upper signs giving the P-curves, the lower giving the N-curves. Using

these formulae and the lengths of the three arcs of A , one can get ex-p
pressions for the values of the coordinates of the two corners of this

path, and of the origin regarded as the end of the third arc. Upon elimi-

nating as much as possible from this system of equations, one obtains

X - i + ca- =bx + y = constant
p p

and therefore, upon differentiating with respect to X

d__= 1 +d._
dX dX

It is obvious that ; therefore '0 ana the aesired in-dX dX
equality follows at once.

Now it is easy to prove that for such a point • is the unique
p

minimal path. In fact, if p is to the right of (above) P , a path

r from p must, by D1 , begin with an N-arc which goes at least far

enough to meet P ; after meeting P the path may be supposed, as in
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the proof of C, to be as described in D2. If p lies on the left of ,

on the other hand, this may be supposed at once. But D2 says that the

shortest such path is obtained by taking the initial N-arc as short as

possible. When p is to the right of P , this means taking q (the

first corner) on P ; when to the left of F , taking the initial N-arc

vacuous. In either case, the path so obtaired is exactly P

A , B , C , ana what has just been proved establisb Theorem 2 for

points in the open lower half-plane and on the positive hali of the x-axis;

the rest follows by symmetry.

V. THE MINIMAL THEORY: g(x,y) = x + 2by

This case corresponds to the equation (2:) of page 3, and for it the

equaticns (4) may be written

du dv + (6)

We must distinguish two subcases2 (i) IbI < 1, (ii) Ibi ý: I These two

subcases display essentially different kirds of qualitative behavior0

A. Ibi < 1 (THE SPINAL CASE)

When Ibi < 1 it is well known that the P--system corresponding to

(6) consists of spirals moving clockwise around the focus (1,0). If b >0

the spirals move in towards the focus (which is therefore stable), while

if b < 0 the spirals move outwards, and the f ociuo is unstab le. If b = 0

the spirals degenerate to a family of circles and the Locus becomes a

center. The N"-system may be obtain?.> by translating the P-system two units

to the left along the x-axio. It wil'. be convenient. to apply a linear

transformation to the variables. Let a +i b' . tben the transforma-

tion is

x = u + bv y :- av (7)

This transformation leaves the axis of abscissae pointwise invariant; in

fact, since it simply represents a change to an oblique coordinate system,

it leaves all the essential properties of the original system undisturbed:

PN-ccrners remain such. simple curves remain So, etc. Most important, the
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time length of a given path is not changed by the transformation. It will

therefore suffice to consider the x,y-plane only; any results obtained there

may be applied in the u.v-plane by invoking the inverse of (7). Under (7)

the original system (6) becomes

dx +-- = -bx ÷ay- b
dt (8)

dy = -a by a
dt

The solutions of (5) (i.e., the P- and N-curves) are given by:

x(t) = e-bt (Aeiat + Be-iat) -

y(t) = ie-bt (Aeit - Be)iat)

where

A [x(0) - iy(O) ; 1] . B= A . (10)

(Here and throughout the sequel the upper sign pertains to the P-system,

the lower to the N-system.) The functions (9) represent ordinary loga-

rithmic sprials or, if b = 0 , circles.

The main result for the present case is embodied in Theorem 7; but

since this is by far the most involved case to be considered, the proof

will be broken up into a number of parts.

Lemma 1. The length of a P- or N-arc cut off from the corresponding

kind of curve by two successive intersections with the x-axis is always

71/a.

Proof. By (9) and (10), a given P- or N-curve intersects the x-axis

when Ae = Be = Aeiat or, otherwise written, when Im Aeiat = 0.

Expanding this expression gives

tan at = Y(0)
x (a) l

For any but the singular solutions (the fo'ci), the quantity on the right
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is well defined or infinite; and since tam at taKes on every such value

at intervals of n/a , the statement follows.

Now a certain sequence of points on the x-axis is to be defined, as

follows: First, take Co 0 0 . If one starts at ( o01Q) (0,0) and

follows the P-curve from that point for the time -n/a one reaches, by

Lemma 1, a certain point ( Cl.0) on the x-axis. If one then follows the

N-curve from (Cl,O) for the same length of time, one reaches a point

( C2.0). Alternately following P- and N-arcs of length -n/a in this

way, one gets the sequence ( C •,0) which was to be defined.

Lemma 2. Cn (1)I(enb + 1 -) , n = 1.2....

Proof. By complete induction. By (9) and (10), the P-curve through

the origin has the equations

x(t) = l - e-bt cos at , y(t) = e-bt sin at

Puttng t-- -it ives •l ] + bn/a
Putting t -n/a gives C+ e , as the formula requires (the

n-i
sum El being of course vacuous in this case.) Now let it be assumed

1
that the formula holds for n = m ; it will be proved for n -m I

( Cm+1 o) is the end-point of an arc whose initial point is ( mO0), and
which is a P- or N-arc according as m is even or odd. Thus the equa-

tion of the arc is

x(t)= e-bt (Aeiat + Be,-i) + (--I)m

where

A = B (-)m+l( +)

If one combine these equations with t = -n/a and the assumed value of

Cm , the result is

Cm~l "x(-n/a) (1)" [ebn/aceibr/a -21 kbn/a) + I]

which was to be shown.
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The letter P will be used to denote the P-arc joining the origin

with ( C1 1 0); by the first lemma, the length of P is n/a

Lemma 3. If p , R , where R is the set which consists of the in-

Lerval 0 < x < C1 on the x-axis and the interior of the region bounded ýy

this interval and r , and if 6 is that path from p which is obtained

by following the N-curve through p to P and then following P into

the origin, T(A) < n/a

Proof. It will certainly suffice to prove this for points on the axis

only. To get what we want it will be convenient to find the coordinates of

p and q by working out from the origin. The
0 p Cl equations of P in exponential form are

SI ebt (it -iatx(t) 0 e- (e + e

y(t)= -bt (e-iat -it t

The point q is given by these equations when t has some value -X

(0 • ¾n/a):

1 bX iak -iaX i bXeiaX -iia&x - e (e + e ) y e ( - e ) (12)

Regarding q as the initial point of the N-arc pq , the time necessary to

reach p being - L(0 < p. c n/a) , one likewise obtains:

xp = ebM (Ae-i•a + Be1ia3 ) + 1 ,

(13)
yp = 0 = ieb$ (Ae-i'J - Beia,,)

where A =(x 1 - iY), B=qq

The equation (13) implies that Ae-ial is real. Putting its imagi-

nary part equal to zero and using (12) one gets

e bsin a(t +p ) = 2 sin aiu

Because 0 c ap. c , the right side, and therefore the left side of this

equation is positive, This. together with the inequality 0 c a(x +p) c 2n

implies 0 c aox ÷, ) c < , which was to be shown.
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With the aid of these three little lemmas it is possible to start

finding minimal paths. As in the proof of Theorem 2, the procedure will be

to examine one part of the lower half-plane after arother until a unique

minimal path from every point in this region has been found; the rest will

follow by symmetry.

One more definition: A P-path is a path which begins with a P-arc,

an N-path with an N-aro.

Theorem 3. If p is a point on the interval 0 < x ci (y = 0),
then given ay P-path A from p which is of length < u/a one can find

-an N-path from p which is shorter than

Proof. A must be of the following type: it begins (by assumption)

with a P-arc pq . This cannot return to the x-axis, for if. it did it alone

(and therefore the whole path) would have a length B n/a , by Lemma 1; and

this has been precluded. From q , A follows some N-arc qr which crosses

the x-axis but, for the same reason as before, does not cross it again. (That

it does cross the x-axis once may be seen as follows: it cannot stop short of

the x-axis, or on the interval 0 < x < 1 , for this would give a corrier of

the wrong kind; and if it stopped on the axis to the right of the point (1,0),

the succeeding P-arc, by the corner condition, would necessarily return to

the axis and therefore have a length > n/a .) The N-arc qr is followed by

a P-arc which must likewise cross the axis at some point s . The point s

lies to the left of p , for otherwise A could not reach the origin from s

without crossing itself. What A may be like beyond s does not natter.

If x = r(pq) , y = r(qr) , a =. r(rs) , then in terms of these

variables one can, by repeatedly applying (9) and (10), get the coordinatez

of the points q , r , s ; and from the resulting expressions one obtainsr,
upon elimination,

"e ea(- eYX+ 2] e""/-- 2) , 7 b - at (14)

q Our obJect will be to show that, by hoiling

p and s fixed and reducing X to O,
s\ P -5 pwe obtain a path which is shorter than A

For this purpose we shall prove

+ p. +a ) 0d ÷
r
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Since p and s are to be held fixed, X can be taken as the sole inde-

pendent variable in (l4); and differentiating both sides of (14) with respect

to X ledds to

eo- 2d + 1
d (X + + a) 2 dT (15)
dT(x - l)eYK + 2

(The denominator does not vanish; for when b / 0 the fact that 0 < < c n/a

implies that it cannot even be real; and when b = 0 it is the sum of two

positive terms.) This derivative is, of course, real; putting its imaginary

part equal to zero gives

d cr ,ýL b x )-b),

de 2 sin a + (xp - 1)e- bsin a(X +sz ) ] (1-x)e sinaK. (16)

d (r
One can use this to eliminate T.- from the right member of (15) or, what

is the same, from its real part. The result so obtained is

2 sin a [2 + (x - 1 )e-bX ] 2

12 + (x - l)ZYx1 2[Ž sin ap+ (xp - l)ebX sin a(K + -,)]

It follows from (16) that the second term in the aoove denominator is posi-

tive; thus the derivative has the sign of sin apL. When y has its origi-

nal value, this is positive, since 0 < X + y + c < n/a . So as X is de-

creased the whole sum k + Y + * decreases, y remains less than n/a ,

and the derivative remains positive. Thus we may shorten A by aecreasing

X ; and x may be decreased without changing the topology of the situation

until one of two things happens:

-. r comes into coincidence with s . But this is impossible, for

if it did occur the shortened path would then contain an N-arc qs which.

since it intersects the x-axis twice, is of length ' n/a . This would con-

tradict the assumpLion that r (A) c nia .

II. q comes into coincidence with p ; that is, K goes all the way

to zero. This is just what was intended.
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Corollary 3.1. If p E R (see Lemma 3), the conclusion of Theorem 3

remains true.

Proof. It is easy to see, by arguments like those used above, that a

sufficiently short P--path from p must be
0 •p of the type pp'qrs... shown in the ad-

s joining sketch. by the proof of the theorem,
one can show that decreasing X -r z(p'q)

"pri r rshortens the whole path. This process may

be continued until one of two things happens:

I (described above) -- which is impossible for the same reason as before

or:

III. The arc qr comes to contain the point p . But in this case
we get a path which is shorter than the original and consists of the closed

loop pp'q'p and an N-path from p . By simply eliminating the loop we get

a still shorter path of the kind scught.

Corollary 3.2. If p & R , any path A from p such that rHA) < n/a
which does not begin with an N-arc intersecting F may be replaced by a

shorter one which does.

Proof. Let q be the initial point of the first P--arc of A . By
assumption, q E R . By applying Corollary 3.1 to q , we may shorten A

by replacing q... with a path from q which begins with a nona-vacuous

N-arc qql" If ql ½ R , there is nothing more to do; Arf ql& R , the
procedure is to be repeated. Sooner or later the point qn , w.hich is the

initial point of the first. P-arc of the path after n such modifications,
must lie on or below P ; for each point qn i- like r! (see the last

sketch), and if all the points qn lay in R , then a-'- the corresponding

points like s on A would l-e to the right of thi origin, which A could

therefore never have reached. (It should be observed that infinitely many

points qn carmot occur, for if they did this would imply thp existence of

infinitely many pieces like piqrs in A, each outside the preceding one;
and this, as it is not difficult to prove, would imply that the length of

the whole path A was infinite.

Theorem h. If p , R , the uniqu minimal path from p is obtained
by following the N-curve through p to r and then foll.owing F into
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the origin. (If p • r, the unique minimal ath from p is obtained simply
hr following r into the orgin.)

Proof. By Lemma 3, we know that there exists at least one path from

p the length of which is less than n/a ; thus we need consider only paths

satisfying this inequality. Then, in view of Corollary 3.2, we can further

restrict our to those paths from p E R which follow the N-curve

from p at least until it reaches P . We shall assume that p lies on the

x-axis; for if the theorem is proved for this case, it will automatically

follow for any point on the N-arc connecting p with P , and the totality

of such points is (as p ranges over the interval) R

Let A be such a path. It begins with an N-arc pq which crosses r

but does not return to the axis, for this would make A too long. The cor-

ner q is followed by a P-arc qr which crosses the axis once (it cannot

stop there -- unless q = 0 -- for this would force the succeeding N-arc to

return to the axis, and this would again make A too long) but, for the
same reason, does not return to it. The N-arc of A from r intersects

the axis at some point s ; what A may do beyond s will be irrelevant.

I'

r The rest of the proof follows that of

Theorem 3 almost to the letter. If one puts
-+ = T(pq) , = T(qr) , and a = r(rs)

s p and computes, using (9)-(10) repeatedly, the

I coordinates of q, r , and s in terms of

K , a , a, and the coordinates of p , one

gets, after a little manipulation

j1 e- {[(x + l)e 7-Y 2] e- 2 (Y-= b - ci) (17)

which corresponds to (14). Differentiating with respect to X , one then

gets

eyc dZ + 1
d ( + + a) 2 dT (18)

TX_ • = 2 - (x + I-)e-X
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(As before, the denominator does iot vanish.) Again separating real anddo'
imaginary parts, putting the latter equal to 0, and eliminating - lead

to:

do' obj [2 sin aF - (x + 1 )eX-Wsin a(X + (x )] 1) (X ÷1 ) s-bX, a (19)
dX p p

2 sin r + ..-bX 2

d~x 2 sin ay--e 2 (20)jt+" ) -- 2- [2 _12 T (xp +)e 2[2 sin ay - (x l)e sin a(x +hs)J

As in the earlier proof, (19) shows that the second factor of the denomina-

tor in (20) is positive; therefore (20) implies that the derivative has the

same sign as sin ac . This quantity, however, is positive, for

0 < F, < X + p + a <n/a . Therefore, as X is decreased, so is + kp + a

(i.e., the path is shortened) and sin ay remains positive. If ), is de-

creased until q lies on r , so that qr contains the origin, and if all

the shortened path beyond 0 is cut off, a still shorter path from p is

obtained, and it is exactly the path whose minimality was to be proved.

This completes the proof.

Theorem 4 really constitutes the first step in an inductive argument,

the whole of which will give the nia n result.

Theorem 5. $f p is a point on the intc.rval K IC x <( In ,
__ _ ____ -n ntl'

then the unique minimal path from p is that which consists of n + 2

arcs, the first of which is an N*-arc of lengjth X (O < X < n/a), the last

or which is of length a (< 7 :E n/c), ani tn.h r, terveni-ig ones of which

are all of length na . (It wiL. be shown Ghat a path of this kind really

exists and is unique.)

Proof. The proof wil! be by induction on n , n --- 0, 1, 2,...

Theorem 4 gives the desired result for n = 0 , where the interval is

( Co. Ci) = (, CI) . In this case, of c rrse, the intervening arcs of

length n/a do not occur.

The next step in the proof will be to determine the locus of the cor-

ners belonging to the paths described in the statement of the theorem. This

will serve us in several ways. IK is clear that the corners must be ob-
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tainable in the foliowing way: one starts at the origin and moves along F
(or r- , the reflection ofI' F in the origin) for some interval of time

- a'( c0 < n/a), then turns onto an N-(P-) arc and follows it fag i• time

-n/a , thence follows the succeeding P-(N-) arc for the same length of time,
t~h

and continues to follow alternating P- and N-arcs until the n such has
th

been traversed. The ends of these n arcs, as a ranges over its inter-

val, describe a certain curve E , wnicn, i claim, is thus the locus ofn
the first corners-on the paths described in the theorenm. it is onLy neces-

sary to verify that this curve E is in the right place, To uo this,
U - thparametric equations for E will be deriveda 1i' t..e i:1 corner from tnh

origin on the path described above is (x (• ),yn(a)) , where k, = 0
gives the corner on F or r- , then

_n+h(h n+h h
x (hl 0-t(P + V ) -.- ) p -q (21)

where n = 0, 1....; h = 0. 1 ... ,n; p = e b/; a l e cos aa;

77 = -e b sin a'. (For h see Lemma 2.)

One proves (21) by induction on h . The number n is really perti-
nent only in that it determines whether the path concerned begins mn I

or on ; when n is even, it begins on F , and when odd on F . Thus

x (a) (. 1)bn( - eba COS aan+), by o- sin ha
no (io ), Yno e sin aa

(Cf. (11), page 33.) In these equations we have (21) for h ý 0 Now as-

sume that (21) holds for h = mi (Xný '+iYn,mrl) is the end of thu arc

of length -n/a from (xny) and, as one can easily verily, is a P--arc

if n + m is odd, an N-arc if n + m is even0  Thus (9) and (10) give

n+mr
Xn,l(a) -p( + B) - (-)n ' , (•) ip(B - A)

where

A 1(x(a) + (-1)n+m .- tyn(a)),
2 ninri
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If one combines these equations with (21) for h im , and uses

Lemma 2, one obtains

x () =(-l)n mnl(pm~l , + l)

(0- (_In+mtl m+1l
Yn,im+l

as claimed.

In particular,

X nn(r) _-pn + 1CnI
(22)

"y. (a) p 7?

and these are the equations of E ° Furthermore,

xnn(0) = lýn x nn(n/a) -- (pI + p)+ IM+l

Ynn(O) = Ynn(n/a) a 0

From this it is easy to see that E is a s:imple, seml-circ le- like curve
n

which lies below the x-axis and whose end-points are those of the interval

" I nc x < I n . En is, in fact, the curve obtained by magnifying F
n ni-i n

by the factor pn and then translating the result to the right for a dis-

tance 11 I. Now it is a simple matter to show the existence and unique-n

ness of the paths in question. For the existence, one needs only observe

that the path obtained by going from p to E along an N-arc and then

following the curve which, by the above construction, defined the point on

E so attained, will suffice. On the other hand, any path of the typen

described must intersect En with an W--arc from p , and beyond this in-

tersection behave like the path just described; but, for permissible values

of X , the N-curve from p intersects £. only once; and this gives the

uniqueness.
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Now the proof proper can be begun. As before, one sets out by de-

ciding how a path from p must behave. It begins, let us say, with an N-

arc of length X , where X 0 . We shall momentarily assume:

X '< R/a (2e3)

Thus the first arc of the path ends at a point q on or below the x-axis,

and from q the second arc qr , a P-arc emerges. The arc qr must cross

the axis, but more will be assumed:

The arc qr intersects the x-axis in the interval -nI '< x < - e Fn-I (24)

The two assumptions (23) and- (24) will be justified at the end of the proof.

Since the shortest path from p is being sought, we can also assume

(and this requires no further justification) that once the path crosses this

interval, say at the point v , it coincides with the shortest path from v,

which is given by the inductive assumption and symmetry; for if it did not

it could be replaced with one which did, and which would certainly be shorter

than the given one. For such a path, therefore, r must be

(x n,*n-l" y )( Yn,n-l(a )) for some value of a which depends on p and K
In other words, by (21),

X= (enbc- cos a i) - ynl' =r pn-l b7sin a

if the length of qr is /L , then using (9) and (10) for the P-arc of

length -M with the initial point r one gets:

Xq =ebM (Ae-i' + BeiaM) + y, q = ieb1 (Ae'a4- .. BeiCM)

where

A (xr - 1- iYrE
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'Then following the N-curve frcou q for the time Ax one getis

X a U (Ce -ia+ e d)l 1 Ocy mis ' (Ge-a -De )m
P P

where

CS~(Xq~l~~q)/..D"

The result of combining a)ll these equations and using Lemma 2 is

x y-X nlY , ,n- keXC-a

x PX( fl l9 Ya - ) eah" y+ 2] (2-5)

where, as before, p - bbn/a and y = b - ai . Our problem is to select

the shortest pawi from those described, which satisfy (65). The length of

any such path Is T = k a y + + (n-l)n/a . Thus the problem reduces

to minimizing T with respect to (say) X , .x being held fixed. Thep
range of variation of X for a fixed x is 0 * X * K , where X isp o 0

that value of K corresponding to a = n/a . From this point on the ar-

gument will fOLLOW famxlar lines. The result of differentiating both sides

of' (25) with respect to K and sultaoly rearranging the terms is
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dTkQ (I d
d (= 2 k dX (26)

The denominator does not vanish for those values of b and 7 which have

been admitted. Upon separating the real and imaginary parts of the right

member of (26), and setting the latter equal to zero, one gtlts:

k d- n-i b (-(-wj'k) da - 2 (Zpk) ebLi sin ae z0 e sin aka t (27)
p e sin aa

Thus the derivative '(26) exists and is continuous for 0 9 - < n/a . Com-

bining (26) and (27) yields the final relation
k IL(Ik n-i b 0 2(n-!)eO]

dT [4( k) 2 - L (zk) p e cos aa + p e sin ahL
n-i b(o+4 ) s k\ n-i ya

p e stin -pL1 2 epk

It is easy to see that all the factors involved, except for sin ak , are

necessarily positive; therefore it is once again true that the derivative
has the same sign as sin We know that sin a. = 0 on E , for

En is exactly the locus of q for M = n/a For X smaller, ioe.,

for q above En, sin caz and therefore ý-• are negative; for X larger,
n dX

positive. Thus n = i/a gives T its minimum value, as was to be proved,

(For x = I , n+l X = 0 and . = n/a give the only path from p of

the type under consideration; thus it must be minimal, and the assertion is

valid on the entire interval I-nI < x * I ýn~lI .)

The proof will be complete as soon as the two assumptions (23) and

(24) have been justified.

The assumption (23) will be justified by showing that any path A

from p which violates (23) may be replaced by a shorter path which sat-

isfies it. If (23) fails to hold for A , this means that the initial

N-arc of A not only returns to the x-axis (on the negative half) but

crosses it. Let v be the point at which this happens. The claim is

that if one "shunts out" v by means of a shcrt P-arc, a shorter canonical

path is obtained. That such a shunting can be performed follows from the
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fact that at a point like v the curvature of the P-
b curve is definitely less than that of the N-curve;

I this may be inferred from the given differential equa-

N IP tions. if the P-arc introduced is short enough, it
v vcannot cross A at any points but those indicated, so

that it aoes not destroy the canonical nature of the

path. That the path obtained in this way satisfies

(23) is obvious; so it on]y remains to show that a

shortening is truly effected.

This will follow from the result: If p (•,') , where ý < --1

is a point near the x-axis, and if k and X' are the lengths of the

shortest P- and N-arc respectively leadin_ from p to the x-axis, then

X < X' . Namely, if the shunting P-arc is sufficiently short, then both

a and b (see the above picture) will satisfy the requirements on p ;

thus the above proposition will imply that avt is shorter than av , and

that vtb is shorter than vb . Taken together. these show that avt b

is shorter than avb , which was to be proved.

To prove the result stated above, regard p a- the initial point of

the respective arcs. (Suppose, for the moment, that p lies below the

x-axis.) By using (9) and (10), and the fact that. the end points of the

arcs are on the x-axis, one gets that the quantities

iaX
1- ) - i7) e and [( E + 1) M-i] eQ

are real. Setting their imaginary parts equal to zero gives

tan aX - -1 tan ak' - U

Since tan x is a monotone increasing function at points of continuity,

and since K and X1 are small,

c < -22-- implies X <V

as w +1 -b -1

as was to be shown. If p lies above the axis, the quantities ij , K,
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and V' change sign, but these sign changes just cancel out to give the

same conclusion.

The assumption (23) has thus been justified; in what follows (the

justification of (24)) it will accordingly be assumed that all paths con-

sidered satisfy this assumption. In defense of (24), it will be shown that

any path for which (2h) fails must be longer tnan A , the path which, ac-p
cording to the theorem, is minimal.

So let A be such a path. it begins with an N-arc of length X

(0 < X _< n/a) . If this arc ends at the point q , then q is the initial

point of a P-arc which, by the argument adauced in support of (23) and

symmetry, may be supposed to stop short of crossing the positive half of

the x-axis. If r is the terminal point of this arc, there follows an

N-arc starting at r which goes at least as far as the positive half of

the x-axis (say at the point s ). It may be that r • s . It follows

from the definition of C nthat If < x . On the other hand, since
o n s-l

A does not cross itself,

x <xsIE Is p n+l

What happens to A beyond s is not ccrtain; but sooner or later, in

order to reach the origin, A must cross one of the two intervals

ICnn-lI < x •< I nI - Kn n< x <- In-li

(For by arguments of the type already given, A can cross neither the N-
arc joining (-16 n1,J) with '( 0n~iIO)' nor the P-arc joining ( IE4 ,)
with (.-ICnI,0), Since these two arcs, together with thc" two xntervals

just described, form a simple closed curve surround .kng the origin, the

remark made must be true.) For momentary convenience, let N(A) be the

number of times A crosses the x--axis after leaving p and before

crossing one of these two intervals. (E.g., N(A) = 0 would mean that
A satisfies (24).) We next prove: if p is in the interval

EnI < x p I l I thenn p n+lI
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nr, c r(Ap)c{ L(n ÷l n (Ž8)

According to a formula on page 42

T (E ) = x * 0- + nn/a
p

Thus it is only necessary to get bounds for X + a . Upon putting p = /a

in (25), one obtains:

xt+1= e [2 Pk pnea]

Since the imaginary part of the right member vanishes, we have

nbcr .nk)

p e snin ak`X + a 2 )sin aX

But on A , 0 :- X c n/a and 0 < X+ a < ken/a ; these facts and the abovep
equation LTrply 0 < ), + a .< n/a which, in turn, implies (2o).

We can say -first that if N(A) ) 3 , then A is longer than A

For when N(A) Ž 3 , A egir s with a curve pqrs as aescribed above,

and s is followea by a curve sq'r's' of the same sort. If iv and v1

are the points where the arcs qr and q'r' intersect the x-axis, one

can show that each of' the four pieces pqv , vrs , sqv, an v'r%'

has a length greater than n/2a ; and since the length of that part of A

following s' is, by the inductive assumption and (2b), greater than

(n - 1)n/a , the length of A itself is greater than (n + 1)n/a which,

by (28), is in turn greater than r(6) . Thus A is too long.

So the cases N(A) -- 1 and N(A) = 2 are the only ones left.

Consider pqv . If X and pt are the lengths of pq and (-v re--
spectively, then working out the coordinates of v gives the equation

2 cos ak - (xp + 1)ebX cos a(X +• ) = 1 - xv

If it were true that K + L < n/20a , then the left member would be <,
since cos a(X + 0 ) , U $ while the right member would be > 2, for
xv < - c•n -i * This contradiction proves the assertion -for pqv;
vrs, etc., are subject to the same argument.
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When N(A)ml, IJ n.. I x s en n This, together with the defi-

nition of C can be made to imply:

.- I i ~ XvC I

0(b ) In other words, v is a point like
r p. only on the opposite side of

the origin. The part of A lying

Sbeyond v provides a path from v
a_ which (because of the assumed posi-

tion of s ) is of the type con-

sidered in the main part of this

proof. It is therefore not shorter
than X 9 the path given by the

statement of the theorem and sym-
qq

metry as the minimal path from v.

It will thus suffice to prove that

the path A' obtained from A by replacing the part beyond v withA v
is longer than A . A minor modification of the argument on pages 41, 42

43 will do it. Here we have exactly the same geometrical situation as

there, except that it is as if the curve began from the interval

Sn~l1 '= p Cn.2 while in fact p is closer to the origin. Thesep dT

modificaticns do not vitiate the conclusion that ( T being the time

length of A' as a function of X = r(pq)) has the sign of sin aji.

Here, however, sin al > 0 , since ju < n/a . ( n =/a puts q on

E n+ ; so if ji >, n/a , q would lie above this curve and force p to-
lie in '~n+l' c x C I ~+2I .) ThusdT ,0 and by deforming A' by

decreasing X (and keeping the path otherwise of the same type) one ob-

tains a shorter path from p . The process may be continued until the

path goes through (- In 1,0); but as soon as this happun! the deformed

path satisfies (24) and this, as we know, implies that it (and therefore

6 itself) is longer than 6 . This was the desired conclusion.p

If N(A) = 2 , Il I x x and -xI~n X - Inl, where

h is the next intersection after s of A with the x-axis. The part

of A after v , call it A ,is either (i) of' the type here considered*

Satisfying (23) but not (24)
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but with N(A) 1 , or (2) of the type considered in the main part of the

proof% according as (1) - nI x <- -X nI or (2) - IC I1-< x <- IC I.
pro v n n+2 v n 41

'As before, because of the position of s , v can lie no farther to the

left.) In either case, A is longer than A , so that in place of A we
v v

may consider the path A' arising from A by replacing A with A . If

-I xn Xv - iCn , then A\ , regarded as a path from p , satisfies
nil v n

N(A') 1 , and therefore is longer than A . If, however,p

n+- then by (2d) the length of A' , which is greater

than that of A , is greater than (n + L)n/a . But, again by (28), the
V

length of A is less than this quantity. This is what was to be proved.

In fact, this completes the whole proof of Theorem 5.

Corollary. If p lies above one of the curves En (see page 40) and

below y = 0 , the unique minimal path from p is that obtained iZ following

the path described in Theorem 5 which passes through p .

Proof. (See the proof of B, page 27.)

The time has come to say something about the sign of the constant b

and the effect it has on the problem we have been discussing. The minimal

path has been found for every point on 0 < x < I<n' , n = , 2,.... Now

by Lemma 2, if p = e / L

n-1 k n P
lnl + 2 lp + 1 = (P - )Px p + 1 1)

Now when b > 0 , p > 1 and therefore coI -- w as n -.- cr ; i.e., the

intervals 1ýnl < X < lcn~lI cover the entire positive half of the x-axis.

On the other hand, when b < 0, p < and we have ICI--- I as
n -P

n -- co , so that in this case the set of intervals $< x I only

covers 0 <'x < .+ (When b = 0 , p = 1 and I I - l+2(n-1)+l = 2n-•-.)
'I .. -p 

n

From this it follows that:

When b >, 0 there exists at least one path from each point in the

plane.

For the minimal paths from points on the positive half of the x-axis

sweep out the whole plane; thus a path from any point may be obtained by

taking that part of a minimal path through the point which lies beyond it.

• Satisfying both (23) and (2h)
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If b < 0 this is no longer true. If S denotes the interior of
the set bounded by the P-arc A of length n/a Joining P = (t + o)

with -P - (-jjP ,0) and the N-arc B Joining the same two points

(that these arcs exist may be verified by making a straight substitution

in (9) and (10)), then:

When b < 0 , there exists a path from p if and only if p 8 S

We first show that there exists at least one path from each point

p c S . Suppose that p lies below the curve C made up of the arcs

E and the arcs arising from th.ese by reflection in the origin. If then

P-curve froM p is drawn backwards (t-"--co), it must intersect one of

the arcs Er , for it surely crosses the x-axis to the right of the origin,

and without first crossing A , which

is itself a P-arc. Let the first such

point of intersection be q . Then

if one follows the N-curve backwards
/ (i.e., upwards) from q , one reaches

-S E 1 21a certain point r on the x-axis. Now

0 -/the unique minimal path from r passes

through p , and therefore that part of

this path beyond p provides a path

from p . The corresponding device works if p is in the complementary

part of S , by symmetry.

To show that no path can exist from a point outside S , we shall

show that no path can cross the boundary of S going inwards. Consider

B ; it is an N-arc, and therefore no path can cross it with an N-arc. but

no path can cross it inwards with a P-arc, for all P-curves crossing B

cross it moving outwards. Proof: By

dx _dyr - y
-= - bx + b L= -ax -by a
dt dt ,

the tangent vector at any point (x,y) on B has the components

(-bx + ay - b, -ax - by - a). Therefore the outward normal to B at this

point has the components (ax + by + a, -bx + ay - b) . Also by (0), the

tangent vector to the P-curve at the same point is (-bx + ay + b, -ax -by +a).
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The inner product of these last two vectors, which has the sign of the

projection of the second on the first, is

(ax + by + a)(-bx + ay + b) + (-bx * ay - b)(-ax - by + a) = 2y

Since y >, 0 on B , this means that the projection is positive, i.e.,

that the P-curve crosses B moving outwards (except, of course, at the

ends of B , where the two curves are tangent,) This proves the assertion

made about B ; since A is subject to the symmetrical argument, the ptoof

is complete.

Theorem 6. If p is a point in the fourth quadrant and below the

curve made up of the pieces E (n = 0, 1.... ), or in the third quadrant,n

and if a path from p exists, then the unique minimal path from p is

that which follows the P-curve through p to the (negative half of the)

x-axis and then proceeds according to the proposition arising from Theorem

5 and symmetry.

Proof. Consider any path A from p which might be minimal. It

cannot cross any of the curves E and must therefore (having followed an
possibly vacuous N-arc and then a possibly vacuous P-arc) cross the nega-

tive half of the axis, say first at the point v . By Theorem 5, we may

suppbse that A coincides with A beyond v * Now one should imaginev

A extended backwards to the axis by having adaed to it the N-arc preceding

p which connects p with the axis, say at the point p' . The resulting

path A' is of the type considered on pages hl-43 , except for the possi-

bilities that A' may cross itself on the arc pp' and that p' may not

lie in the interval in which p was there supposed to lie. Both of these

possibilities prove irrelevant. Moreover, ,c (the length of the first

P-arc qr of A' , which is also that of A ) is less than n/a , by the

position of q . Therefore, if V is the length r (PV) and X is the

length of p 1pq (the initial N-arc of A' ), T' is a function of X
dT

and the argument of pages hl-43 implies L > 0 ; thus by decreasing X

one decreases T' . (The derivative is actually discontinuous when v

passes through one of the points (- ICnI ,C) during this contraction, but

T' itself is a continuous function of X .) If, in particular, one de-

creases X until q comes into coincidence with p and then removes p'p
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from A, , one obtains what must be the shortest path from p , and is in

fact as claimed.

The main result for the spiral case can now be stated briefly and com-

prehensively. Let C denote the curve composed of the pieces:

c,)=pn, b c n-i k bn/a

xn(a) -p (2 -e cos 2 n k i , a c o' /a paebi

nb-

yn(0-) = _pne bsin aa n = 0, 1, 2,...

and of the pieces arising from these by reflection in the origin. C

divides the set S from which paths can be drawn into an upper and a lower

part. ( S is as described on page h9 when b < 0 , the whole plane in the

contrary case.)

Theorem 7. If p C S and p is above (resp. below) C , the unique

minimal path from p is obtained by following the N- (resp. P-) curve from

p until it reaches C , then switching to the P- (resp. N-) curve through

the point of intersection, then followin this curve until it returns to C

then switching again, and so on, until the origin is attaine.d. (In other

terms, the unique minimal paths are obtained as solutions of (4) by taking

4(x,y) -1 above C and on that part of C to the left of the origin

(within S) and 4 (x,y) = 1 in the rest of S .)
It should be recalled that all this is in terms of the oblique co-

ordinates x and y (See page 30.) The result is also valid for the

original u and v if C is defined as follows: Let Eu be the P-arc

connecting the origin with the point ( lO), E be the curve obtained
n n

by magnifying E0  by the factor p and translating the result n

units to the right (n = 1, 2,...), and En the curve obtained by reflecting

E in the origin (n 0, 1, 2,...); then C = ) E 6 En)

B. [,I > 1 (THE NODE CASE)

In this case the underlying equation is again

dx

(6)
- - x -- 2by

dt
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butt now I bI ' . (The marginal case I b I 1 , where the singular points

are so-called degenerate nodes, is more closely related to this case than

to the spiral case, but for technical reasons the proofs which follow do not

happen to be directly extensible to it. However, the same general line of

reasoning, appropriately recast, can be made to cover this case too. Because

the amount of :'ecasting necessary is small, and because the case is of no

special significance, it will not be discussed in detail.)

The P- atd N-curves corresponding to (6) when Ibi ' 1 are given by

the equations

x(t) = o-bt (Ae Ot + Be-•t) + i

(29)

y(t) =-e-bt [(b - P)Aeýt + (b + $)Be-t 
(

where P - bV - 1 and

A - L1_ ry(0 ) + (b + P) x(O) i)] B= - -1[y(O)+(b-p)(x(O)+l)] (30)

The N-system consists of parabola-like curves which tend, when b - 1 , to

the point (-1,0) as t -Pac and, when b c -1 , away from it; this kind

of singular point is called a (stable or unstable) node. The special

straight-line solution which, with the parameter eliminated, can be written

y = -(b + 13)(x + 1) plays a special role; it will be called the major

N-separatrix. Rough sketches of the N-system for the two signs of b are

given be)ow. To visualize the P-system, one should imagine all the curves

moved two units to tho right al.ng y = 0

b )b ( -)
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(The "degenerate node" occurs when f 0 ; in this case the family

of curves in the smaller sectors bounded by the linear curves collapses to

a single straight line, and all the remaining curves are of the type which

crosses the x-axis once.)

When b > 1 there are paths from each point in the plane; this will

become clear when the minimal paths are described below. If b < -1 , let

A be the P-semicurve obtained by starting at (-1,0) and letting t- --q

and let B be the symmetrical N-semicurve. A and B together bound a

certain open neighborhood S of the origin.

When b <-l , a path from p exists if and only if pt S

That a path from p can be found when p E S will be seen presently.

However, no path can enter S from the outside,

for no path can cross either a or B moving

B inwards. Consider B ; it is itself an N-arc,

so no path can cross it with an N-arc; it will

thus suffice to prove that all P-curves crossing

B do so moving outwards. (This will prove the

assertion for B , and the corresponding asserticn

for A will follow by symmetry.) By (6), d yT x - 'by Therefore

at any point on B (y > 0) the slope of the P-curve is greater than that

of the N-curve, i.e., of B itself; since both curves move to the right,

this means that each P-curve crosses B upwards, as was to be proved.

Lemma 4. If 1 < x <ao , no path from p can begin with a P-arc.

Proof. For b <-l . there exist no paths at all from such a point.

When b Ž 1 , the statement is obvious for x = 1 , for then there is no
p

P-arc from p . For x > 1 , the P-curve thrcugh p goes dowtiwardj and
p

to the left, as can be seen from (6); if a path from p began along this

curve, it would be bound to stay on it until it crossed y 0 , by the

condition on corners (page 24); but such a curc. never aoes this -- it

tends monotonely to the point (1,0), remaining in the lower hal-f-plane.

Lemma 5. Given any P-path (i.e., path. t,•ginning with a nonvacuous

P-arc) from a point p on the interval 0 < x < 1 , one can Vind an

N-path from p which is shorter.
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Proof. Such a P-path must behave as follows: the P-arc with which it

begins breaks off in a corner q aoove the axis, for the P-curve from p

does not return to the axis in finite time. The following N-arc crosses

the axis downwards (in fact, within the interval 0 < x < 1 ) and, for the

same reason, breaks off in a corner r below the axis. The succeeding P-

arc extends back up to the axis, which it meets at a point s which, since

the path cannot cross itself, must lie to the left of p ; however, s also

lies to the right of (-1,0). The situation is thus as

sketched. It will be shown, as previously, that when
r r(pq) is decreased ( p and s being held fixed),

r(pqrs) also decreases, so that in particalar if q

is brought down to coincide with p a path shorter than the given one will

be obtained. This will be the N-path from p whose existence was claimed.

(This proof differs from the corresponding one in the spiral case in that

there is no need here to consider the possibility that r might come into

coincidence with s before q reaches p ; for it is easy to see that r

cannot come into coincidence with s at all.) Tf X r(pq), Ij = r (qr),

and 0 = r (rs). it will thus suffice to show that

d
TX- kK + fL+ a ) >0

Using (29) and (30) repeatedly, one carl compute the coordinates of q , r

and s in the usual way as functions of X , o , - , and the coordinates

of p ; from these one obtains

x f[xp - l)ehX + 2] ehM - 2}eh) + i (31)

where h = -b + 0 . Holaing x and x fixed, differentiating with re--p s
spect to X , ana rearranging bhe resul t, one obtail ns

e-h4 d-•- +!
d -h +) (32)X d ++ h2 (xp- l)ehX + 2

It is clear from the geometry of pqrs that !- > 0 ; therefore the nu-
dei

merator of the right member of (32) is posit:'ve. That the denominator i3
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positive when h <0 (b > 1) follows from x > >0, hK< 0 . When h> O
P

(b > -1) , the denominator is also positive; were it not, it would follow

from (31) that x <-1 ,and this is impossible.

We again define F as that part of the P-curve through the origin

which lies below the x-axis, and r- as that part of the N-curve through

the origin which lies above. F and F- are symmetric to each other in

the origin.

Lemma 6. If p is above F and below y 0 , any path from p

which does not begin with an N-arc intersecting F can be replaced by a

shorter path from p which does0

Proof. This Lemma follows from Lemma 5 in the same way that Corollary

3.2 followed from Theorem 3. (See pages 3h-36.)

Theorem 0. In tne case g(x,y) z x + 2by , Ibi > I , the unique

minimal path from a point p 6 S , S being the sý-t from thich paths exist,

is determined in the following way: Let C = 0+ + * P C is a simple

curve which divides S into an upper and a lower part. If p is in the

upper part, the minimal path from p is that obtained by following the N-

curve from p until .t intersects F , and then following F into the

origin; if p is in the lower part, by following the P-curve from p until

it intersects P and then following - into the origin. (In terms of

•(x,y) , * should be +1 below C and on P * --l above C and on F-.)

C is sketched for positive and negative b below. When b > 1, as

already observed, S is the entire plane.

b >1 b -1

Proof. Tnh theorem. will be prcveo by considering various possible

positions of the poinit p in ttie lower haL--prarei the rest will follow by
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symmetry. In the picture which follows- ('which is drawn for tLhe caset>2)

SNand S Pdenote the major N- and ?'-separatrices respectively, and K

denotes the N-arc connecting (1,0) with F£When b < -1 , the region-s

R R fia3, n do not oc-cur,, and much ef the followinig proof (wihich has

been written to fit the eas-e b > 1 )- is irrolhvant,

R,- R /

AKV h2

FT,.

A. Suppose p CtR thi ---et being ta~e:: as c.los~ed. Let Abe

any path from p . y :.emma% t m be assu~nied that A bgn withi an.

N-arc pq which at hw~ nse rwtleblwte axi:S, and

the P-arc of Awhich begins at. q mut cres t~he axis (at cr to the 'Left

of the origin); in fan,., jr- m-_iysIv.:c h; tkw proposition. whichfllw

fromr Lenmr.a 6 by s3ymmtry-P1, 1li1; ins an- t'acJ F Lt it intersect

U at the poinit r Thr-: y ~..~rg o§' tnt: N- arýL pq and it) wi_.l. br.

denoted by % and a rn~ct.e.~t timeý len~rgth ofl the P.-arc. pq

will be denoted by Fi (N. -. o oclalme.d te-at rO is j~art of A;

this is merely an aul-A~l-arv a" rnsdme for convrnnience 0 ) If, _-.ing

(29)-(30), one compuztes z 3ccntt:c and 0 (regarded- a5

the end oLf the N.-arc. rQ ,$:Gha

where h -b + S3 G C k:b ' sv' he result --f differentiating
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both sides of (33) with respect to a , which may be regarded as the inde-

pendent variable giving pqrO , p being held fixed, is

2 (1 + L' ) *+ e eh (Ceh) - 2)

d•(k +•2 - Ceh),3

It will suffice to show that this quantity is positive; for this will imply

that x + p has its minimum value when a is as small as possible, i.e.,

when it vanishes; but this is exactly the case for the path claimed to be

shortest, and for it X + j is the length of the entire path. Since, as

usual, L > 0 , it will in fact be enough to prove

0 <ehP (2 - Ceh¾)) 2  , (35)

fram which the positivity of the right member of (34) follows at once. To

prove (35), suppose first that h <O (b > I) . The first inequality of

(35), since hX < 0 , waild follow from C < 2 . But this is true; for

writing C out, transposing the 2 and multiplying both sides by the posi-

tive quantity (b + 0) gives the equivalent inequality

y + (b + )( - 1) .< 0yP

which is exactly the (true) statement that p lies to the left of or on

-.'the major P-separatrix. The other inequality of (35), since hp < 0

would follow from C > 0 which, in the same way, is equivalent with

y + (b + )(x+ ) > 0
p p

but this is the statement that p lies to the right of the major N-

separatrix, and this is also true. If h > 0 (b < -3) , both of the in-

equalities in (35) are implied directly by (33).

B. Suppose now that p t R2 , where this set is taken to include

the adjoining sections of y 0 0 , SN , and r , but to exclude K . The

proof for this case follows simply from the preceding one. In A , all

that was really used about p was that it lay between the two separatrices
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and to the right of F . Thus the same proof applies verbatim to any point

of R to the left of the major P-separatrix. Suppose, then, that p lies

to the right of this line. by Lemma 6, it is necessary to consider only

those paths from p which begin with N-arcs intersecting F . Any such

path must pass through the part of R2 already dealt with (it being true

that F and S do not intersect, for they are both P-curves); let p',
P

therefore, be any point on the N-curve from p which lies in that part of
R to the left of S ; by what has been shown, the shortest path from p'
2 P

is of the type claimed; therefore the shortest path from p , consisting as

it does of the N-arc pp' and the shortest path from o' , is again of the

type claimed.

C. Suppose. finally, that p e R + R, + R , this set being taken
.3 is 5

open. By what has already been proved, we need to consider the following

type of path only: it begins with an N-arc (which, if p 0 R3 , must cross

F but may otherwise be vacuous), say pq . From q the path follows a

P-arc qr at least to the axis y = 0 and thence, by the results symmetri-

cal to A and B , to F-, which the path then follows into the origin.

Thus we are now considering paths pqrO as treated under A (where pqrO

was not in fact the true path considered), except that p is now in a dif-

ferent place. So (33) also holds here, but now X + L + a is the actual

length of the path being considered. by the usual argument, it will thus

suffice to prove

d d(+ + >

p being held fixed. In fact, the differentiation of both sides of (33)

with respect to X , followed by a rearrangement of terms, gives

e - h /i d__cr

d ehMiEXd-"( + p- +ao") 2 dX
2 - Cehk

da
Again, it is evident that -X >0O; thus the numeratcr is positive. That

the denominator is positive follows (when h < 0 ) from the fact that p

lies to the left of Sp or (when h >0 ) from (33), as or page 57.

This completes the proof of Theorem 6.



VI. THE MINIMAL THEORY: g(x,y) = -x + 2by; SUMMARY

The only lineac" case yet unexamined is that corresponding to equation

(2"') of page 3; it arises when g(x,y) = -x + 2by , and represents the

physically improbable situation that there occurs not only the usual velocity

damping, but also an "output damping" in the direction opposite to that

which characterizes ordinary (simple or damped) harmonic motion.

The equations with which we have to deal are therefore

dx d + x-2byd-t- y ' dt - b

The P-system corresponding to tnese equations consists of hyperbola-like

curves for which the point (-1,0) is a saddle point, the separatrices being

the lines

y = (-b ! 6)(x + 1) 6 = 4 b 2 * l>b b

Note that irrespective of the sign of b the two separatrices have slopes

of opposite sign. In fact, the value of b plays no role at all in de-

termining the qualitative behavior cf the curves. This fact, together with

the experience derived from the preceding sections, enables one to dispatch

this case rather swiftly.

sketch of the P-system is given below. The N-system -s similar.

only moved two units to the right. The P-

and N-curves are riven explicitly by the equa-

tions

-bt St -x(t) = e- (Ae + Be- 1

0 y(t) = -t [(b - 6)Ae6t + (b + 5)L-b6t]

wh•re A ana --are Aiven by:

,a- - y•, + \U tO) Lx(o) -. J2f / 0'ý + (b 0) LX)±Jf.
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We first note that a path from the point p exists if and only if

p lies in the strip bounded by the parallel lines y = -(kb + 6)(x - 1)

To get the necessity it will suffice to show that no path can cross
either of the bounding lines into the strip. Consider the line

y = -(b + 6)(x + 1) ; it consists of two P-curves, and therefore cannot

be crossed by any P-curve whatsoever, Moreover, by the relation which

subsists between the slopes of the P- and N-curves at a point, it can be
seen that N-curves always cross the line going out of the strip. Thus no

path can enter the strip along this line; the same

holds for the other bounding line by symmetry.

That there do exist paths from any point within
(-1,0) the strip will be seen below.

Now let F be, as before, that part of the

N-curve through the origin which lies above the

x-axis, F that part of the P-curve through the

origin which lies below. C = F-+ 0 + F is
again a simple curve which divides the strip defined above into an upper

and a lower part.

Theorem 9. When g(x,y) - -x + 2by , b > 0 , the unique minimal path

from any point p in the 3trip bounded by the two lines y -(b + 6)(x 1)

is given as follows: if p lies above C (see the preceding paragraph),

by following the N-curve from p to F and then following F into the

origin; if p lies below C , symmetrically.

Proofi The proof is mu•.I like previous ones; so much so, in fact,
that it is not worthwhile to give it in complete detail. The essential

things to prove are:

(i) Given any P-path A from a noint p on the interval 0 < x < 1.

one can find an N-path from p which is shorter than 8.

From this follows, as in the derivation of Corollary 3.2, that for
any point p below y = 0 and above F (and, of course, within the
strip) it is only necessary to consider paths from p which begin with N-

arcs intersecting 7
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"(ii) The unique minimal path from a point p on the interval

0 < x < 1 is obtained by following the N-curve from p to P , and

then fcolowing P into the origin.

In view of (i), to prove this it will suffice to shog that any

path from p which intersects P with its initial arc, an N-arc, is

longer than the 2i~imed minimal path "f it doesn't coincide with it.

Now let p be any point below the x-axis and within the strip,

and let A be a path from it. A begins with an N-arc of lengtn X

which, if p is to the right of r , must go as far as P , but other-

wise may be vacuous. There follows a P-arc qr with q below the axis

which must intersect the axis at. exactly one point. This point of inter-

section, in fact, lies on the interval -1 < x •< 0 , so that the result

arising from (ii) by symmetry implies that we may suppose that r lies on

P-. and that the rest of the path A is obtained by following 7- from

r to the origin. Such a path is thus uniquely determined by X (p being

fixed), and may be written Ap (X) . To complete the proof for the lower

half-plane (the rest will follow by symmetry) it will therefore suffice to

prove:
(iii) The length of p (X) is a strictly increasing function of X

Proof of (i). By the usual reasoning, one can see that. A must

begin with an arc configuration like that shown.

q If X = r(pq) , y = r(qr) , and a r(rs),

then we want to prove

0 + -(X 4 + " ) >0

Computing the coordinates of the corrners, elimi-

nating superfluous variables, and simplifying,

one obtains

x = {[(Xp + l)eh - 2 ] ehM + }eh- i

where h 6 - b > 0 . I.f p and s are held fixed and both sides of

this equation are differentiated with respect to X , one gets
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T-(X+/L *cr) -- _ __

- (x )e
p

Since > 0 * the numerator is positive. The denominatur is also posi-

%Fye, for if it were not the above equat.ion for x would make s > 1

and this is trpossibe.

Proof of jii). Let. A be any path from p P0 < x 7,
_- p

.s obscrzved, we need consider A only if it begins with an N-arc pq

whieh intersects F The point q is followed by a P-arc qr which,

by (i) and s.ymmetry, may be supposed to cross or end in . If the point

at which qr intersects f is v , we shall consider the "virtral" path

pqvO instead of the true path A r qtor..dO ; for -f it can be shcwn that

r(pqv) is a strictly increasing function of X•- r(pq) (or, equivalently,

o - - r(vO)), (i) wi] t f'ollow as in. A, pages 56-57.

Again computing the cocrdinat-s of the corner"- q , v , and 0

(U being regarJed as tlhr erd of the arc vO ), an• 3o on, one ge..ts

(x I-i)e P * 2 e (-.o )(33')p

where X r pq) , At -r (qv) and 0 ' r (vO) This is exactly equa-
d

tion (33), page 56, with C x ; therefore to getf{Ox + P) > op
which is what is needed, it will suffice to prove:

hk hX
0<:".zeh\ (, -e)e < 2p

The s0cond Inequality is obvious, since x < L ; the fir-t follows fromp
J33') and h >0 o

ii ), exaciy like tne "virtualt ' path pqvC-

dep•crib!d abc-ve, except for the f&ct. that p no zonger lies on the

x-ax: s. The equation corres.ponding 4-c. I3') is

wlv-re K ' 4- + x 1o a ifferentaLntg (33") gives
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_-h," dT

rT A V)] = (x + a) d2 2 - Kehx

The numerator is again positive; that the denominator is positive follows

from (33") and h > 0 . This completes tne whole proof.

SUMMARY OF THE MINIMAL THEORY FOR g(x,y) LINEAR

It was pointed out on page 2 that tlhc equation (2) can always be

Kwritten in one of the three forms (2')-(2"'). in terms of the problem

treated here, this means that when g(x,y) is linear one may suppose

I, that it has one of the three forms (i) g(x,y) = by ; (ii) g(x,y)=x+ 2by;

(iii) g(x,y) = -x + 2by , where b is an arbitrary constant. The prcblem

has now been completely solved for al. three cases, and therefore for (2);

the solution for (i) is Theorem 2 (page 26); for (ii). Theorems 7 (page

51) and 8 (page 55); for (iii), Theorem 9 (page 60).* All these results

may be summarized in the following form:

Theorem 10. When g(x,y) is linear, the points from which paths

exist for the corresponding system

dx dy . ,dt 7 dt ._,Vj - gxIy) (4)

form a certain connected oden set S containing the origin, ihere exists

a uniqu simpl curve C passing through the origin wnich divides S into

an upper and a lower part., and such that if ' (x,y) 1 1 above C and on

the part of C to the right of the origin, (x,y) = --I in the rest of

S , then the solution cur:ve of (4) from Ly point p E S is the unique

minimal path from p . The set S ani the curve C can be explicitly

described wnen g(x.v) is given.

Briefly, the problem stated at the bcttom of page 3 har, when g(x,y)

is linear, a unique so 4 ticn which can be dxpLicitly dascribed. This is

the central result of this pap er.

The physically important cases are (i) and (ii) with b >Ž 0
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VII. g(x,y) NONLINEAR

When it becomes necessary to attack a problem for which g(x,y) is

nonlinear, the most one should hope to be able to carry over from the last

three sections is a few partial arguments and a point of view; for nearly

everything that has been done for the linear case depended rather heavily

on having explicit expressions for the P- and N-curves, and this is natu-

rally out of the question for most nonlinear equations. However, some cf

the arguments which have been used did not really rely on those explicit

expressions, and may be assembled in various ways to yield results under

more liberal hypotheses. An example of such a result is given in Part A

below.

In general, each nonlinear problem is likely to require a separate

treatment, and usually a qualitative and partial discussion is the best

one can legitimately expect. Such a discussion for the interesting case

in which the F- and N-systems each contain a stable limit cycle of the re-

laxation oscillation type is given below in Part B.

A. g(x,y) INDEPENDENT OF x

The results of IV (where g(x,y) = by ) for b . 0 really depended

only on the qualitative behavior of the solutions, and can therefore be

generalized; one such generalization is:

Theorem 11. If (1) g(x,y) has the following properties:

(i) g(x,y) is independent of x ; i.e., g(x,y) = f(y) ;

(ii) f(-y) -f(y) ;

(iii) f(-K) = 1 , f(y) < 1 for lyl <K , K bein some positive

constant;
+

and if (2) R is the open strip bounded by the two lines y -K ; then
there exists a unique minimal path from any point p E R , determined as

in Theorem 2.

Examples. Some functions satisfying (i)-(iii) are: g(x,y) = Cy ,

C<0O, n=i, 3, 5,..., K C!/3 ; g(x,y) = -sin(cy) (K = n/2a)

Proof. The assumption (i) implies that any ?-curve can be obtained
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from any other by translating it along the x-axis; (ii) gives the condition

for symmetry, as discussed at the end of Iii. The cracial assumption is

(iii). The P-curve through the origin (which will be taken as a typical
dxdy=i-fy.Atteoii

P-curve) satisfies the equations d = 1 - f(y) . At the origin

the motion is upwards and, as it leaves the origin, tending to the right.

By (ii) and (iii), f(K) = -1 ; therefore f(y) < 1 , and the fumction

1 - f(y) attains a positive minimum f , on 0 < y < K . Fran this, by

the second differential equation,

ii t
0'IO

where t is the value of the parameter representing the origin. But this0

means that for some value of t (e.g., t = t + K/c ) the curve will
0

have crossed the line v = K . Thus the P-curve through the origin moves

monotonely upwards and to the right from the origin until, after some

finite interval, it intersects y = K

By applying a similar argument to any interval -K + 6 •< y < 0

(0 < 6 < K), we see that the curve must cross each line y = -K + 6 as

t - -- co and must therefore come arbitrarily close to the line y = -K

But it cannot cross this line, which is itself a P-curve. Once the curve

has crossed the line y = -K + 6 (for decreasing t ) it must remain

within the strip -K < y< -K + 6 , for 4Y = 1 -f(y) > 0 in this strip,
dx at

Moreover, since = y < -K + 6 < 0 in this strip, the curve goes in-

finitely far to the right as t -• -c

Thus it stands verified that the P-curve through the origin, and

therefore eli P- and N-curves, have exactly those properties of P- and

N-curves used in proving Theorem 2 for b < 0 . The proof of that theorem,

accordingly, can be applied directly here, and gives the result stated.

Corollary 11.1. The conclusion of Theorem 11 remains true if one

replaces (iii) and (2) by:

(iii') f(y) < 1 , for -co < y <co;

( 2' ) R is the entire plane
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Proof. Everything is as before, except that now the P-curve through

the origin goes strongly to infinity in the sense that if x(t) and y(t)

represent this curve, x(t) - co and y(t)-- -co as t-. -co , while

x(t) --- co and y(t) --m-c as t---co. The curve thus behaves qualitatively

like a parabola with its vertex at the origin and y = 0 as its axis. The

proof of Theorem 2 for b = 0 consequently works here.

Corollary 11.2. The conclusion of Theorem 11 remains true if one

replaces (iii) bz:

(iii") f(-K) = 1 and f(y) < 1 for jyj < --K , K being some

negative constant.

Proof. In the same way that Theorem 11 corresponds to Theorem 2

with b < 0 , this corresponds to Theorem 2 with b > 0 . There is the

difference that Theorem 11 accounts for all the points from which paths

exist, while for a function satisfying (iii") there may very well exist

points outside the strip lyl < -K from which paths do exist but for which

no minimal paths are described. (Indeed, this happens when f(y) ý by ,

b > 0 , as we have seen.) The reason for this incompleteness is that it

was at Just this stage in the proof of Theorem 2 that the explicit formulae

for the P- and N-curves were used.

B. LIMIT CYCLES

When g(x,y) is nonlinear, limit cycles can occur among the P- and

N-curves, As is well known, the close study of these limit cycles..

especially as regards their exact quantitative characteristics .... presents

great difficulties. The object of this discussion will be to show one way

limit cycles can occur in a manner relevant to our problem, and then to say

somuething abcut the corresponding choice of *k(x,y).

We shall consider the generalized van der Pol equation

d~x dx 36
- ý+ /s f(x) !+ x = 0 (36)

dr dr

where f(x) £ CI and a is a real, positive parameter, If Gx) is

defined by
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G(x) i- f(u) du
0

then (upon putting t 4±r ) the equation (36) can be written

dx - dy 1

In this situation a theorem due to LaSalle (LaSalle (1))-states that:

If there exist four numbers a1e a2 <0 < a3 < a such that

(a) G(a1 ) G(A3) and (aI) = G(aQ ,

(b) G(a2) •0(x) G< (a 3) f•r a 1 X a4 , and

(c) G'(al) <0 and G'(a 4) <0

then for /z > yo > 0 there exists a unique stable limit e in a

certain neighborhood of the curve H (see the figure); as -L- co ,

the limit cycle converges to H o

y What we are really concerned with is

not (36), but rather the zorresponding

\ G(x) equations

d2x dx +
a 2 0 a d(x) - x2= /- (37)

, aH Because of the nonlinearity, the

H

existence of a periodic solution of (36)

does not guarantee the existence of a

periodic solution for either of the equa-

tions (37). What one would like to see happen. however, is that there

occur a P-limit cycle lying slightly to the right of the origin and an

N-limit cycle slightly to the left, so that each could act as a "big

focus" and the curves P and P , defined as in the spiral case (see

page 33), would be spiral arcs acting as they did there.^ One would then

One could also seek P- and N-cycles each just barely containing the
origin at its left or right extreme respectively; thi;s would lead to
considerations similar to those which follow.
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suppose that the minimal paths from points in some neighborhood of the

p - origin would be obtained by taking 0 (xy) = +1•e above C and on r .-Ibelow C and on - I

within the neighborhood. Indeed, the very pur-
pose here is to imitate the spiral case, having

limit cycles in place of foci.

c - + o + If we put x = u : 1 , (37) becomesJ

d 2u + u
+ Mf (u + 1) L + U- =0 (36:)

dr dr

and this is subject t-o LaSalle's theorem. Putting

G+l (u) = -f - 1) dv

0

one gets the functions G+l(u) and G1 (u) corresponding to G(x) for

the P- and N-systems respectively. It is easy to see that the curve of

G_1 (u) can be obtained by moving that of G+l(U) two units to the left

along y = 0 and then raising or lowering it until it again passes through

the origin.

It follows from LaSalle's theorem that both the equations (36-) will

give limit cycles in the u,y-plane ( y being as above, and not identified

with d- as previously) as described when /i is sufficiently large if

each of the functions G0l(u) satisfies a set of conditions (a)-(c), Ire.,

if their common curve has the general shape of that in the following figure. j
If ua (the abscissa of the point a

y with respect to the u-axis) satisfies

ua >-l, then for a given e > 0 and I
a+/ ) u sufficiently large the limit cycle

b y corresponding to ll will have its left

. H 1  extreme point p on the interval
- d1 -1 <u < u + 6 Similarly, the limitv Up a "

Sd cycle corresponding to H_1 will have

its right extreme point q on the inter- J
val vd - e v q <1, if vd < 1

I
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The function u(t) which represents the limit cycle corresponding to

H+l is thus a periodic function whose minimum value lies in the intervaldx-pae o
(-1, u + £ ) The corresponding P-curve (in the original x, L -plane) for

a d
(37) is therefore a limit cycle whose left extremity lies on the interval

(0, 1 + u + E ); this point must lie on the x-ax•s bVecause dtx y / 0 offthe axis. This limit cycle is c.cnsequently
dx

Y dt of the kind illustrated, as was desired. An

.N-lir•it cycle of the corresponding type on the

Sother side of the origin is obtained in the

a.• same way.

It is not certain that these limit cycles

are the only ones in the P- and N-systems, or

even that they are the only ones passing

through a prescribed neighborhood of the origin; but when they are, the P-

and N-curves behave near the origin in the manner described on the preceding

page.

In order for all this to happen, the iunction G+l(u) must have four

relative extrema, and therefore f(x) must have at least four zeros and be.

if a polynomial, of degree four or higher. (A simple transcendental function

which has the necessary properties is

f(x) = R cos nx + cx

where c is a constant which must be properly chosen; it gives

G (U) = sin nu - cu

a function whose graph is of the type shown.)

It was once thought that the introduction of such limit cycles might

make for better response of the system in the vicinity of the origin than

linear systems could provide; that the presence of the limit cycles might

accelerate the motion along the P- and N--curves nearby3  But this violates

our basic principle (which, to be sure, has not been rigorously demcnstrated)

that the best control should be that which uses the full magnitude of the

available control force at all times; for if a certain amount of force is
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available to be put into the first order term in (37), it would then be

better to take it at its full strength and combine it with the control

force already present (in the form :l) on the right-hand side, than to dx
use it partially and continuously in the form of the function /t f(x) •-.

However, if an equation like (37) is dictated by circumstances, and

the function f(x) cannot be altered at will, a discussion of the above

sort must be undertaken. In the case which has been considered the limit j
cycles occur in what, from the standpoint of tractability, is probably

the simplest way; but even so it is complex enough. But even when such a j
discussion can be carried out in sufficient detail, it is still only

prefatory to the treatment of the problem actually at hand, that of finding

the minimal paths. Except for conjectures based on analogies with the

linear case, nothing whatsoever has been discovered along these lines0

I
I
I

I

I
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APPENDIX I. VELOCITY CONTROL

In section II a description was given of the conclusions reached in

previous investigations of the behavior of the solutions of the equation

d 2X dx d

t +dt (0 < b < 1) (2')

when • (x,y) is of the speciai tye € (x,y) = sgn(Kx + My) , K and M

being constants. The same group of investigators has also studied the

similar problem in which the control force has a derivative like this; i.e.,

the problem associated with the equation

dt'x

where qi is a continuous function of t and, at points where

Kx + My + N4 /i 0, satisfies

d= sgn(Kx + My + N4) dx (39)

K , M , and N being constants.

In the former problem, 0 along any soiuuion was a step function al-+

ternating between the values -1; here 4 along any solution is a continuous

"sawtooth" function whose graph consists of linear pieces of slope -1. Such

a system (called velocity control) has the practical advantage that, without

being essentially more difficult to design, -it gives a smoother operation.

This, in fact, is its principal virtue; it does not claim to give, for a
bounded control force, a rapidity of response comparable to that of the dis-

continuous, "position control" arrangement which has been discussed. Still,

one might consider the problem of replacing the function sgn( Kx + M2 E+ N,)
, dt

by a more general function of L, -v / which takes on only the values

-1 in such a way as to obtain minimal paths in the yx, T-t,' -space and

.
The appendices deal with questions which lie outside the domain proper to
the main text, but which nevertheless are of a kindred nature and should
be discussed for the sake of completeness.
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thus the most rapid response within the limits of the system. This problem

has not been touched. What has been done (the most recent account is in

Fltgge-Lotz (2), Chapter 5) is to make a graphical study of the solutions

of (3b)-(39) after the manner of that described in section II above. The

several cases that occur corresponding to the different possible combina-

tions of signs on the constants K , M , and N are given separate treat-

ments.

The technique used to implement the investigation is first to intro-

duce the auxiliary variable

y-t) = x(t) - 4(t)

and to consider solutions in the (y. ,) -space, where they consist

of arcs whose project nns in the a) -plane are arcs of logarithmic

spirals. Then the solutions are considered in terms of their projections

in this and a certain other plane, whereby all the desired information can

be obtained. One again encounters end points, start points, periodic solu-

tions, etc. It may also happen that a solution has a last corner beyond

which it moves off to infinity; the purpose of introducing the term in 41
in the argument of the signum function is to avoid this phenomenon. Fur-

ther details will not be given here.
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APPENDIX II. MULTIPLE IDDE CONTROL

Those interested in the practical applications of the theory for the

case in which g(x,y) is linear will have noted that the subject of time

lag was ignored in III-VI. The present appendix will have something to say

about this and related matters.

It is easy for one to convince himself that the systems of minimal

paths discovered in those sections (and sumnarized in Theorem 10, page 63)

are "structurally stable with respect to time lags" in the sense that the

presence of a sufficiently small time lag does not affect the essential

over-all behavior of the solution curves, This follows from the fact that

the time length of the minimal path from a point depends continuously on

the position of the point, from the character of C with relation to the

P- and N-curves, and so on. In fact, the only place where a small time lag

can seriously mar the qualitative situation is at the origin. There a time

lag has the effect of causing a solution to overshoot the origin slightly

instead of ending there, have a corner, overshoot in the reverse direction,

have another corner, and repeat the act indefinitely. (Cf. page 16.)

Perhaps the first means of avoiding this which suggests itself is that

of slightly altering the curve C so that the time lag is anticipated and

pre-corrected; but this is not really feasible, for the time lag is a com-

plex and variable thing which cannot be predicted precisely or be expected

to be always the same. Indeed, the assumption that a time lag is simply a

clean, sharp delay in the occurrence of a corner is itself a considerable

distortion of the real state of affairs.

Far better is the plan of disconnecting the control entirely as soon

as the solution has entered a satisfactorily small neighborhood of the

origin, and replacing it there either by a control of a different sort, or

by no control at all, letting the system run free.

If. for instance, the system in question is given by the equation

d 2x dx +
= + 2b Tt + x (0 <Ob <l)

"h te t

whe`n the control force -1 is removed the solution curve spirals into the
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origin. (The very function of the control force -1 is to accelerate this

process.) If, therefcre, the mechanical system is so designed that the

force represented by t1 is switched in accordance with Theorem 10 (page 63),

except that in some small neighborhood of the origin in the x,y-plane

y = !ýý it is .remnved entirely, then a typical solution curve would be-

have in the following way: it would move rapidly in from its initial point

and then, having passec through a finite number of corners (in any but the

spiral case, at most one) it woula enter the neighborhood mentioned; once

this had happened the solution would spiral gently down to the origin. In

the presence of a time lag the solution curve would not behave differently.

This arrangement has the valuable properties that:

1) it reduces any error, together with its first derivative, almost

to zero very rapidly, and thus accomplishes the purpose of the system

within arbitrarily small tolerance limits:

2) it prevents high-frequency" oscillations back and forth around the

origin such as would occur in the presence of a time lag otherwise;

3) it prevents the system from being hypersensitive to trifling dis-

turbancesfrom the zero-error state.

Such an arrangement gives what is called dual mode control; this is

what arises in the conventional theory of servomechanisms when the feedback

circuit has a threshold of sensitivity below which it gives no output at

all. (See for example the Appendix in MacColl (1).) In the context of our

minimal theory, its principal interest lies in assuring the mathematician

that conclusions reached disregarding time lags need not be utterly useless

when confronted with practical demands. but the problem of choosing the

"right" dual moue arrangement in a particular situation is not a matbemati-

cal one.

In general, a multiple mode contr:ol might be defined as a control

system in which different kinds of control are to be applied in different

parts of the ohas pfanre. Such arrangements are frequently desirable when

cne or more of the assumptions underlying the problem stated in I fail. An

instance of this is disussed 4t some length in the next appendix.
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One should perhaps include with multiple mode controls those subject

to special restraints of various kinds. ror instance, it may happen that

physical limitations prevent the magnitude of the derivative of thit con-

trolled variable (in terms of the example of page 1, the angulax speed of

the motor) from exceeding a certain value, K , so that any solution must

be contained in the horizontal strip IJY < K in the phase plane. In this

case there is a multiple mode control in the sense that the control is not

meaningfully described at all outside the strip; if a path reaches one of

the boundaries of the strip (necessarily from the interior). it must follow

this boundary for some distance in the prope- direction and then return to

the interior and, eventually, the origin. It is easy to see that for the

case in wuich g(x,y) = by the curve C should be the same (within the

strip lyl Y K ) as if y were unconstrained; what happens in more com--

plicated cases, for example the spiral case, is not clear.
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APPENDIX III. COULOMB DAMPING

The whole problem with which we have dealt derived much of it8 imn-

portance from the assumption that the best behavior (in terms of response

time) should be obtained from a servomechanism when the full strength of

the power source is used; but tAis "full strength't may vary for different

states of the system, instead of remaining constant as we have supposed.

In this appendix such a case will be discussed.

In terms of the example of page 1, it may be possible to apply to

the motor a second control force in the form of "Coulomb damping," which

is characterized by being constant in magnitude but opposite in sign to

the derivative of the output; the equation for the system could therefore

be written

I d2- + R - K f Lxi - C. h x, • sgn ( ,L) (40)
dt2 at k d di atat2

where everything is as in equation (1), page 1, except for C , which ir

some positive constant, arid h (xt) , which take3 on only the va -ues +1dth

and 0 and represents the instruction from the control as to whether or not

the Coulomb damping is to be applied at any particular time. The might hand

member of the above equation can be written sLiply F x,y-•) , where this

function assumes only the values

K, -K, K--C, -KC (for d> 0)

K -K, K + C , -K + (for <a0

K, -K (for TT = 0)

Now the natural question to ask is: How should F be chosen -so that all

solutions of (40) will go to the origin in the x.y, ( ) -plane in

minimum time? If the assumption mentioned above is valid, it should again

be true that best results can be obtained by using only the extreme valuqr:

of F available at any point. This is equivalent to saying that F

This problem was recently suggested to the writer by Professor n..L. Rau-h.
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assumes only the values*

K, -(K + C) for ý- >o) and

-K, K + C (for a-• < •

This problem is mathematically equivalent with that which arises

when it is assumed that the Coulomb damping is applied uninterruptedly,

i.e., that h- +1 , and that C < K ; in this case F takes on only the

values*

K-C, -K-C (for L > 0 and

K C , -K + C (for I <"0

Both problems are special cases of this one, which is a generaliza-

tion of the problem on page 3:

For the equation

d 2 A . X ' d 4 N

dt

with g given and • a function which is allowed to take on only the

values a , -6 [for -> O , -a , for <O (a and B
dt / ~ dt

being positive constants), how should • be chosen so that every solu-
dx Ointelatosil

tion of (hi) reaches the state x = 0 L = 0 in the least Lossible

time ?

The problem will be discussed here for the simplest case, g -= 0

This gives the system, equivalent with (hi),

dx ýy(X, y) -(42)
dt -y' dt

dxx

• dx
What happens for = 0 turns out not to matter; the solutions ma- be
defined so as to extend across this axis as if F had the same values
there as in a contiguous part of the plane.
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Instead of talking about P- and N-curves, etc., we now speak of a ,

•-a , --- curves, etc. The considerations of sections I and III carry over

in full, although the definition of solution (cf. pages 6-7) becomes even

more awkward; in particular, Theorem I, which states in effect that one

needs to consider only canonical paths, still holds, where a canonical

path is now defined as one which has no (-O)(a)-corners above y = 0 and

no (U)(-a)-corners below. All this holds for any g Z C1.

The a-curves for (42), in parameter-free form, are

y 2= 2a(x + k) (-co< k < co)

and similarly for the other three values of c . These are of course

parabolas with y 0 0 as their axis. If P is that part of the .2-curve

Lhrough the crigin which lies below the x-axis, and FP is that part of

the (-ý)-curve through the origin which lies above, then by trivial exten-

sions of' the methods of IV (pages 26--26)

one gets that the unique minimal paths are

-r -obtained by taking 0 as shown, with P -

+>ia onEr', #= - on rP, 0:- a or on

X the negative half of the x-axis, 0 = -a

or -0 on the positive half. In fact, the

=+ - -a analogous results for g(x,y) = by , b $ 0.

can also be proved in the same way. The

F problem for g less simple has not been

studied.
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